1
|
Kuusk T, Grivas N, de Bruijn R and Bex A:
The current management of renal cell carcinoma. Minerva Med.
108:357–369. 2017.PubMed/NCBI
|
2
|
Linehan WM and Ricketts CJ: Kidney cancer
in 2016: RCC-advances in targeted therapeutics and genomics. Nat
Rev Urol. 14:76–78. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fisher RI, Rosenberg SA and Fyfe G:
Long-term survival update for high-dose recombinant interleukin-2
in patients with renal cell carcinoma. Cancer J Sci Am. 6 Suppl
1:S55–S57. 2000.PubMed/NCBI
|
4
|
Rosenberg SA, Yang JC, Topalian SL,
Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH
and White DE: Treatment of 283 consecutive patients with metastatic
melanoma or renal cell cancer using high-dose bolus interleukin 2.
JAMA. 271:907–913. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang Q, Li H, Yang J, Li L, Zhang B, Li J
and Zheng J: Strategies to improve the clinical performance of
chimeric antigen receptor-modified T cells for cancer. Curr Gene
Ther. 13:65–70. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Geyer MB and Brentjens RJ: Review: Current
clinical applications of chimeric antigen receptor (CAR) modified T
cells. Cytotherapy. 18:1393–1409. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kochenderfer JN, Dudley ME, Feldman SA,
Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes
MS, Sherry RM, et al: B-cell depletion and remissions of malignancy
along with cytokine-associated toxicity in a clinical trial of
anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood.
119:2709–2720. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cruz CR, Micklethwaite KP, Savoldo B,
Ramos CA, Lam S, Ku S, Diouf O, Liu E, Barrett AJ, Ito S, et al:
Infusion of donor-derived CD19-redirected virus-specific T cells
for B-cell malignancies relapsed after allogeneic stem cell
transplant: A phase 1 study. Blood. 122:2965–2973. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lim WA and June CH: The principles of
engineering immune cells to treat cancer. Cell. 168:724–740. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lamers CH, Klaver Y, Gratama JW, Sleijfer
S and Debets R: Treatment of metastatic renal cell carcinoma (mRCC)
with CAIX CAR-engineered T-cells-a completed study overview.
Biochem Soc Trans. 44:951–959. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Weijtens ME, Willemsen RA, Valerio D, Stam
K and Bolhuis RL: Single chain Ig/gamma gene-redirected human T
lymphocytes produce cytokines, specifically lyse tumor cells, and
recycle lytic capacity. J Immunol. 157:836–843. 1996.PubMed/NCBI
|
12
|
Pietra G, Vitale C, Pende D, Bertaina A,
Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, et
al: Human natural killer cells: News in the therapy of solid tumors
and high-risk leukemias. Cancer Immunol Immunother. 65:465–476.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rosenberg SA, Lotze MT, Muul LM, Leitman
S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E,
Vetto JT, et al: Observations on the systemic administration of
autologous lymphokine-activated killer cells and recombinant
interleukin-2 to patients with metastatic cancer. N Engl J Med.
313:1485–1492. 1985. View Article : Google Scholar : PubMed/NCBI
|
14
|
Law TM, Motzer RJ, Mazumdar M, Sell KW,
Walther PJ, O'Connell M, Khan A, Vlamis V, Vogelzang NJ and Bajorin
DF: Phase III randomized trial of interleukin-2 with or without
lymphokine-activated killer cells in the treatment of patients with
advanced renal cell carcinoma. Cancer. 76:824–832. 1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parkhurst MR, Riley JP, Dudley ME and
Rosenberg SA: Adoptive transfer of autologous natural killer cells
leads to high levels of circulating natural killer cells but does
not mediate tumor regression. Clin Cancer Res. 17:6287–6297. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Miller JS, Soignier Y,
Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna
D, Le C, Defor TE, Burns LJ, et al: Successful adoptive transfer
and in vivo expansion of human haploidentical NK cells in patients
with cancer. Blood. 105:3051–3057. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rubnitz JE, Inaba H, Ribeiro RC, Pounds S,
Rooney B, Bell T, Pui CH and Leung W: NKAML: A pilot study to
determine the safety and feasibility of haploidentical natural
killer cell transplantation in childhood acute myeloid leukemia. J
Clin Oncol. 28:955–959. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Curti A, Ruggeri L, D'Addio A, Bontadini
A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli
G, et al: Successful transfer of alloreactive haploidentical KIR
ligand-mismatched natural killer cells after infusion in elderly
high risk acute myeloid leukemia patients. Blood. 118:3273–3279.
2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Altvater B, Landmeier S, Pscherer S, Temme
J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M and
Rossig C: 2B4 (CD244) signaling by recombinant antigen-specific
chimeric receptors costimulates natural killer cell activation to
leukemia and neuroblastoma cells. Clin Cancer Res. 15:4857–4866.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kailayangiri S, Altvater B, Spurny C,
Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg
H, Hartmann W, et al: Targeting Ewing sarcoma with activated and
GD2-specific chimeric antigen receptor-engineered human NK cells
induces upregulation of immune-inhibitory HLA-G. Oncoimmunology.
6:e12500502017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Muller N, Michen S, Tietze S, Töpfer K,
Schulte A, Lamszus K, Schmitz M, Schackert G, Pastan I and Temme A:
Engineering NK cells modified with an EGFRvIII-specific chimeric
antigen receptor to overexpress CXCR4 improves immunotherapy of
CXCL12/SDF-1α-secreting glioblastoma. J Immunother. 38:197–210.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Geller MA, Cooley S, Judson PL, Ghebre R,
Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A,
Curtsinger J, McKenna D, et al: A phase II study of allogeneic
natural killer cell therapy to treat patients with recurrent
ovarian and breast cancer. Cytotherapy. 13:98–107. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gong JH, Maki G and Klingemann HG:
Characterization of a human cell-line (Nk-92) with phenotypical and
functional-characteristics of activated Natural killer cells.
Leukemia. 8:652–658. 1994.PubMed/NCBI
|
24
|
Arai S, Meagher R, Swearingen M, Myint H,
Rich E, Martinson J and Klingemann H: Infusion of the allogeneic
cell line NK-92 in patients with advanced renal cell cancer or
melanoma: A phase I trial. Cytotherapy. 10:625–632. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tam YK, Martinson JA, Doligosa K and
Klingemann HG: Ex vivo expansion of the highly cytotoxic human
natural killer cell line NK-92 under current good manufacturing
practice conditions for clinical adoptive cellular immunotherapy.
Cytotherapy. 5:259–272. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tonn T, Becker S, Esser R, Schwabe D and
Seifried E: Cellular immunotherapy of malignancies using the clonal
natural killer cell line NK-92. J Hematoth Stem Cell. 10:535–544.
2001. View Article : Google Scholar
|
27
|
Boissel L, Betancur M, Wels WS, Tuncer H
and Klingemann H: Transfection with mRNA for CD19 specific chimeric
antigen receptor restores NK cell mediated killing of CLL cells.
Leuk Res. 33:1255–1259. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Muller T, Uherek C, Maki G, Chow KU,
Schimpf A, Klingemann HG, Tonn T and Wels WS: Expression of a
CD20-specific chimeric antigen receptor enhances cytotoxic activity
of NK cells and overcomes NK-resistance of lymphoma and leukemia
cells. Cancer Immunol Immunother. 57:411–423. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schonfeld K, Sahm C, Zhang C, Naundorf S,
Brendel C, Odendahl M, Nowakowska P, Bönig H, Köhl U, Kloess S, et
al: Selective inhibition of tumor growth by clonal NK cells
expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol
Ther. 23:330–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang C, Burger MC, Jennewein L, Genßler
S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M,
Tonn T, et al: ErbB2/HER2-Specific NK cells for targeted therapy of
glioblastoma. J Natl Cancer Inst. 108:2016. View Article : Google Scholar
|
31
|
Esser R, Muller T, Stefes D, Kloess S,
Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C,
Schönfeld K, et al: NK cells engineered to express a GD2-specific
antigen receptor display built-in ADCC-like activity against tumour
cells of neuroectodermal origin. J Cell Mol Med. 16:569–581. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sahm C, Schönfeld K and Wels WS:
Expression of IL-15 in NK cells results in rapid enrichment and
selective cytotoxicity of gene-modified effectors that carry a
tumor-specific antigen receptor. Cancer Immunol Immunother.
61:1451–1461. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chu J, Deng Y, Benson DM, He S, Hughes T,
Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, et al: CS1-specific
chimeric antigen receptor (CAR)-engineered natural killer cells
enhance in vitro and in vivo antitumor activity against human
multiple myeloma. Leukemia. 28:917–927. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang H, Zhang W, Shang P, Zhang H, Fu W,
Ye F, Zeng T, Huang H, Zhang X, Sun W, et al: Transfection of
chimeric anti-CD138 gene enhances natural killer cell activation
and killing of multiple myeloma cells. Mol Oncol. 8:297–310. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Genssler S, Burger MC, Zhang C, Oelsner S,
Mildenberger I, Wagner M, Steinbach JP and Wels WS: Dual targeting
of glioblastoma with chimeric antigen receptor-engineered natural
killer cells overcomes heterogeneity of target antigen expression
and enhances antitumor activity and survival. Oncoimmunology.
5:e11193542016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen X, Han J, Chu J, Zhang L, Zhang J,
Chen C, Chen L, Wang Y, Wang H, Yi L, et al: A combinational
therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1
for breast cancer brain metastases. Oncotarget. 7:27764–27777.
2016.PubMed/NCBI
|
37
|
Han J, Chu J, Chan Keung W, Zhang J, Wang
Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P, et al:
CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII
enhance killing of glioblastoma and patient-derived glioblastoma
stem cells. Sci Rep. 5:114832015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen KH, Wada M, Firor AE, Pinz KG, Jares
A, Liu H, Salman H, Golightly M, Lan F, Jiang X and Ma Y: Novel
anti-CD3 chimeric antigen receptor targeting of aggressive T cell
malignancies. Oncotarget. 7:56219–56232. 2016.PubMed/NCBI
|
39
|
Chen KH, Wada M, Pinz KG, Liu H, Lin KW,
Jares A, Firor AE, Shuai X, Salman H, Golightly M, et al:
Preclinical targeting of aggressive T-cell malignancies using
anti-CD5 chimeric antigen receptor. Leukemia. 31:2151–2160. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Rezvani K and Rouce RH: The application of
natural killer cell immunotherapy for the treatment of cancer.
Front Immunol. 6:5782015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xu J, Tian K, Zhang H, Li L, Liu H, Liu J,
Zhang Q and Zheng J: Chimeric antigen receptor-T cell therapy for
solid tumors require new clinical regimens. Expert Rev Anticancer
Ther. 17:1099–1106. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Orlowski M and Wilk S: Catalytic
activities of the 20 S proteasome, a multicatalytic proteinase
complex. Arch Biochem Biophys. 383:1–16. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lilienbaum A: Relationship between the
proteasomal system and autophagy. Int J Biochem Mol Biol. 4:1–26.
2013.PubMed/NCBI
|
44
|
Chen D, Frezza M, Schmitt S, Kanwar J and
Dou QP: Bortezomib as the first proteasome inhibitor anticancer
drug: Current status and future perspectives. Curr Cancer Drug
Targets. 11:239–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Manasanch EE and Orlowski RZ: Proteasome
inhibitors in cancer therapy. Nat Rev Clin Oncol. 14:417–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Richardson PG, Hideshima T and Anderson
KC: Bortezomib (PS-341): A novel, first-in-class proteasome
inhibitor for the treatment of multiple myeloma and other cancers.
Cancer Control. 10:361–369. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Huang Z, Wu Y, Zhou X, Xu J, Zhu W, Shu Y
and Liu P: Efficacy of therapy with bortezomib in solid tumors: A
review based on 32 clinical trials. Future Oncol. 10:1795–1807.
2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kondagunta GV, Drucker B, Schwartz L,
Bacik J, Marion S, Russo P, Mazumdar M and Motzer RJ: Phase II
trial of bortezomib for patients with advanced renal cell
carcinoma. J Clin Oncol. 22:3720–3725. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pellom ST Jr, Singhal A and Shanker A:
Prospects of combining adoptive cell immunotherapy with bortezomib.
Immunotherapy. 9:305–308. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ames E, Hallett WH and Murphy WJ:
Sensitization of human breast cancer cells to natural killer
cell-mediated cytotoxicity by proteasome inhibition. Clin Exp
Immunol. 155:504–513. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang Q, Wang H, Li H, Xu J, Tian K, Yang
J, Lu Z and Zheng J: Chimeric antigen receptor-modified T cells
inhibit the growth and metastases of established tissue
factor-positive tumors in NOG mice. Oncotarget. 8:9488–9499.
2017.PubMed/NCBI
|
52
|
Armeanu S, Krusch M, Baltz KM, Weiss TS,
Smirnow I, Steinle A, Lauer UM, Bitzer M and Salih HR: Direct and
natural killer cell-mediated antitumor effects of low-dose
bortezomib in hepatocellular carcinoma. Clin Cancer Res.
14:3520–3528. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lundqvist A, Abrams SI, Schrump DS,
Alvarez G, Suffredini D, Berg M and Childs R: Bortezomib and
depsipeptide sensitize tumors to tumor necrosis factor-related
apoptosis-inducing ligand: A novel method to potentiate natural
killer cell tumor cytotoxicity. Cancer Res. 66:7317–7325. 2006.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Shi J, Tricot GJ, Garg TK, Malaviarachchi
PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr,
Barlogie B and van Rhee F: Bortezomib down-regulates the
cell-surface expression of HLA class I and enhances natural killer
cell-mediated lysis of myeloma. Blood. 111:1309–1317. 2008.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Hallett WH, Ames E, Motarjemi M, Barao I,
Shanker A, Tamang DL, Sayers TJ, Hudig D and Murphy WJ:
Sensitization of tumor cells to NK cell-mediated killing by
proteasome inhibition. J Immunol. 180:163–170. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Finney HM, Lawson AD, Bebbington CR and
Weir AN: Chimeric receptors providing both primary and
costimulatory signaling in T cells from a single gene product. J
Immunol. 161:2791–2797. 1998.PubMed/NCBI
|
57
|
Carpenito C, Milone MC, Hassan R, Simonet
JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF,
Albelda SM, et al: Control of large, established tumor xenografts
with genetically retargeted human T cells containing CD28 and CD137
domains. Proc Natl Acad Sci USA. 106:3360–3365. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Lundqvist A, Yokoyama H, Smith A, Berg M
and Childs R: Bortezomib treatment and regulatory T-cell depletion
enhance the antitumor effects of adoptively infused NK cells.
Blood. 113:6120–6127. 2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F,
Zhou Y, Xu D, Xu J, Zhao L, et al: Low-dose bortezomib increases
the expression of NKG2D and DNAM-1 ligands and enhances induced NK
and γδ T cell-mediated lysis in multiple myeloma. Oncotarget.
8:5954–5964. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Seeger JM, Schmidt P, Brinkmann K, Hombach
AA, Coutelle O, Zigrino P, Wagner-Stippich D, Mauch C, Abken H,
Krönke M and Kashkar H: The proteasome inhibitor bortezomib
sensitizes melanoma cells toward adoptive CTL attack. Cancer Res.
70:1825–1834. 2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Thounaojam MC, Dudimah DF, Pellom ST Jr,
Uzhachenko RV, Carbone DP, Dikov MM and Shanker A: Bortezomib
enhances expression of effector molecules in anti-tumor
CD8+ T lymphocytes by promoting Notch-nuclear factor-κB
crosstalk. Oncotarget. 6:32439–32455. 2015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Pellom ST Jr, Dudimah DF, Thounaojam MC,
Uzhachenko RV, Singhal A, Richmond A and Shanker A: Bortezomib
augments lymphocyte stimulatory cytokine signaling in the tumor
microenvironment to sustain CD8+ T cell antitumor
function. Oncotarget. 8:8604–8621. 2017. View Article : Google Scholar : PubMed/NCBI
|