1
|
Ryan DP, Hong TS and Bardeesy N:
Pancreatic adenocarcinoma. N Engl J Med. 371:1039–1049. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Bednar F and Simeone DM: Recent advances
in pancreatic surgery. Current Opin Gastroenterol. 30:518–523.
2014. View Article : Google Scholar
|
3
|
Ghaneh P, Smith R, Tudor-Smith C, Raraty M
and Neoptolemos JP: Neoadjuvant and adjuvant strategies for
pancreatic cancer. Eur J Surg Oncol. 34:297–305. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vaccaro V, Sperduti I and Milella M:
FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N
Engl J Med. 365:768–769. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kristensen A, Vagnildhaug OM, Gronberg BH,
Kaasa S, Laird B and Solheim TS: Does chemotherapy improve
health-related quality of life in advanced pancreatic cancer? A
systematic review. Crit Rev Oncol Hematol. 99:286–298. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sultana A, Smith CT, Cunningham D,
Starling N, Neoptolemos JP and Ghaneh P: Meta-analyses of
chemotherapy for locally advanced and metastatic pancreatic cancer.
J Clin Oncol. 25:2607–2615. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kirn DH and Thorne SH: Targeted and armed
oncolytic poxviruses: A novel multi-mechanistic therapeutic class
for cancer. Nat Rev Cancer. 9:64–71. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaufman HL, Deraffele G, Mitcham J,
Moroziewicz D, Cohen SM, Hurst-Wicker KS, Cheung K, Lee DS, Divito
J, Voulo M, et al: Targeting the local tumor microenvironment with
vaccinia virus expressing B7.1 for the treatment of melanoma. J
Clin Invest. 115:1903–1912. 2005. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Chard LS, Lemoine NR and Wang Y: New role
of Interleukin-10 in enhancing the antitumor efficacy of oncolytic
vaccinia virus for treatment of pancreatic cancer. Oncoimmunology.
4:e10386892015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu Z, Ravindranathan R, Li J, Kalinski P,
Guo ZS and Bartlett DL: CXCL11-armed oncolytic poxvirus elicits
potent antitumor immunity and shows enhanced therapeutic efficacy.
Oncoimmunology. 5:e10915542015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Heo J, Reid T, Ruo L, Breitbach CJ, Rose
S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW, et al: Randomized
dose-finding clinical trial of oncolytic immunotherapeutic vaccinia
JX-594 in liver cancer. Nat Med. 19:329–336. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Breitbach CJ, Thorne SH, Bell JC and Kirn
DH: Targeted and armed oncolytic poxviruses for cancer: The lead
example of JX-594. Curr Pharm Biotechnol. 13:1768–1772. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Deng L, Fan J, Ding Y, Zhang J, Zhou B,
Zhang Y and Huang B: Oncolytic efficacy of thymidine kinase-deleted
vaccinia virus strain Guang9. Oncotarget. 8:40533–40543.
2017.PubMed/NCBI
|
14
|
Zhang Q, Yu YA, Wang E, Chen N, Danner RL,
Munson PJ, Marincola FM and Szalay AA: Eradication of solid human
breast tumors in nude mice with an intravenously injected
light-emitting oncolytic vaccinia virus. Cancer Res.
67:10038–10046. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Park SH, Breitbach CJ, Lee J, Park JO, Lim
HY, Kang WK, Moon A, Mun JH, Sommermann EM, Maruri Avidal L, et al:
Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an
oncolytic and immunotherapeutic vaccinia virus in colorectal
cancer. Mol Ther. 23:1532–1540. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kochneva G, Zonov E, Grazhdantseva A,
Yunusova A, Sibolobova G, Popov E, Taranov O, Netesov S, Chumakov P
and Ryabchikova E: Apoptin enhances the oncolytic properties of
vaccinia virus and modifies mechanisms of tumor regression.
Oncotarget. 5:11269–11282. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Timiryasova TM, Li J, Chen B, Chong D,
Langridge WH, Gridley DS and Fodor I: Antitumor effect of vaccinia
virus in glioma model. Oncol Res. 11:133–144. 1999.PubMed/NCBI
|
18
|
Ghobrial IM, Witzig TE and Adjei AA:
Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin.
55:178–194. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chauhan D and Anderson KC: Mechanisms of
cell death and survival in multiple myeloma (MM): Therapeutic
implications. Apoptosis. 8:337–343. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chauhan D, Neri P, Velankar M, Podar K,
Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades
N, et al: Targeting mitochondrial factor Smac/DIABLO as therapy for
multiple myeloma (MM). Blood. 109:1220–1227. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ge Y, Lei W, Ma Y, Wang Y, Wei B, Chen X,
Ru G, He X, Mou X and Wang S: Synergistic antitumor effects of CDK
inhibitor SNS032 and an oncolytic adenovirus co-expressing TRAIL
and Smac in pancreatic cancer. Mol Med Rep. 15:3521–3528. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Pan Q, Huang Y, Chen L, Gu J and Zhou X:
SMAC-armed vaccinia virus induces both apoptosis and necroptosis
and synergizes the efficiency of vinblastine in HCC. Human Cell.
27:162–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang S, Shu J, Chen L, Chen X, Zhao J, Li
S, Mou X and Tong X: Synergistic suppression effect on tumor growth
of ovarian cancer by combining cisplatin with a manganese
superoxide dismutase-armed oncolytic adenovirus. Onco Targets Ther.
9:6381–6388. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lei W, Wang S, Yang C, Huang X, Chen Z, He
W, Shen J, Liu X and Qian W: Combined expression of miR-34a and
Smac mediated by oncolytic vaccinia virus synergistically promote
anti-tumor effects in Multiple Myeloma. Sci Rep. 6:321742016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Buller RM, Smith GL, Cremer K, Notkins AL
and Moss B: Decreased virulence of recombinant vaccinia virus
expression vectors is associated with a thymidine kinase-negative
phenotype. Nature. 317:813–815. 1895. View Article : Google Scholar
|
26
|
Levinson AD: Cancer therapy reform.
Science. 328:1372010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kaiser J: Combining targeted drugs to stop
resistant tumors. Science. 331:1542–1545. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Salvesen GS and Duckett CS: IAP proteins:
Blocking the road to death's door. Nat Rev Mol Cell Biol.
3:401–410. 2002. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Lopes RB, Gangeswaran R, Mcneish IA, Wang
Y and Lemoine NR: Expression of the IAP protein family is
dysregulated in pancreatic cancer cells and is important for
resistance to chemotherapy. Int J Cancer. 120:2344–2352. 2007.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wilkinson MJ, Smith HG, McEntee G,
Kyula-Currie J, Pencavel TD, Mansfield DC, Khan AA, Roulstone V,
Hayes AJ and Harrington KJ: Oncolytic vaccinia virus combined with
radiotherapy induces apoptotic cell death in sarcoma cells by
down-regulating the inhibitors of apoptosis. Oncotarget.
7:81208–81222. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu Y, Mou X, Wang S, Liu XE and Sun X:
ING4 expressing oncolytic vaccinia virus promotes anti-tumor
efficiency and synergizes with gemcitabine in pancreatic cancer.
Oncotarget. 8:82782–82739. 2017.
|
32
|
Liu Z, Ravindranathan R, Kalinski P, Guo
ZS and Bartlett DL: Rational combination of oncolytic vaccinia
virus and PD-L1 blockade works synergistically to enhance
therapeutic efficacy. Nat Commun. 8:147542017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hidalgo M: Pancreatic cancer. N Engl J
Med. 362:1605–1617. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Martinez-Ruiz G, Maldonado V,
Ceballos-Cancino G, Grajeda JP and Melendez-Zajgla J: Role of
Smac/DIABLO in cancer progression. J Exp Clin Cancer Res. 27:1–7.
2008. View Article : Google Scholar :
|
35
|
Fulda S, Wick W, Weller M and Debatin KM:
Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced
apoptosis and induce regression of malignant glioma in vivo. Nat
Med. 8:808–815. 2002. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Shiozaki EN and Shi Y: Caspases, IAPs and
Smac/DIABLO: Mechanisms from structural biology. Trends Biochem
Sci. 29:486–494. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bader M and Steller H: Regulation of cell
death by the ubiquitin-proteasome system. Curr Opin Cell Biol.
21:878–884. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu Y, Zhou L, Huang J, Liu F, Yu J, Zhan
Q, Zhang L and Zhao X: Role of Smac in determining the
chemotherapeutic response of esophageal squamous cell carcinoma.
Clin Cancer Res. 17:5412–5422. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tirrò E, Consoli ML, Massimino M, Manzella
L, Frasca F, Sciacca L, Vicari L, Stassi G, Messina L, Messina A
and Vigneri P: Altered expression of c-IAP1, survivin, and Smac
contributes to chemotherapy resistance in thyroid cancer cells.
Cancer Res. 66:4263–4272. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Metwalli AR, Khanbolooki S, Jinesh G,
Sundi D, Shah JB, Shrader M, Choi W, Lashinger LM, Chunduru S,
Mcconkey DJ, et al: Smac mimetic reverses resistance to TRAIL and
chemotherapy in human urothelial cancer cells. Cancer Biol Ther.
10:885–892. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ishizaki H, Manuel ER, Song GY, Srivastava
T, Sun S, Diamond DJ and Ellenhorn JD: Modified vaccinia Ankara
expressing survivin combined with gemcitabine generates specific
antitumor effects in a murine pancreatic carcinoma model. Cancer
Immunol Immunother. 60:99–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Al Yaghchi C, Zhang Z, Alusi G, Lemoine NR
and Wang Y: Vaccinia virus, a promising new therapeutic agent for
pancreatic cancer. Immunotherapy. 7:1249–1258. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nguyen TL, Tumilasci VF, Singhroy D,
Arguello M and Hiscott J: The emergence of combinatorial strategies
in the development of RNA oncolytic virus therapies. Cell
Microbiol. 11:889–897. 2009. View Article : Google Scholar : PubMed/NCBI
|