1
|
Surana R, Sikka S, Cai W, Shin EM, Warrier
SR, Tan HJ, Arfuso F, Fox SA, Dharmarajan AM and Kumar AP: Secreted
frizzled related proteins: Implications in cancers. Biochim Biophys
Acta. 1845:53–65. 2014.PubMed/NCBI
|
2
|
Bovolenta P, Esteve P, Ruiz JM, Cisneros E
and Lopez-Rios J: Beyond Wnt inhibition: New functions of secreted
frizzled-related proteins in development and disease. J Cell Sci.
121:737–746. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kawano Y and Kypta R: Secreted antagonists
of the Wnt signalling pathway. J Cell Sci. 116:2627–2634. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Rattner A, Hsieh JC, Smallwood PM, Gilbert
DJ, Copeland NG, Jenkins NA and Nathans J: A family of secreted
proteins contains homology to the cysteine-rich ligand-binding
domain of frizzled receptors. Proc Natl Acad Sci USA. 94:2859–2863.
1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Melkonyan HS, Chang WC, Shapiro JP,
Mahadevappa M, Fitzpatrick PA, Kiefer MC, Tomei LD and Umansky SR:
SAR Ps A family of secreted apoptosis-related proteins. Proc Natl
Acad Sci USA. 94:13636–13641. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Foronjy R, Imai K, Shiomi T, Mercer B,
Sklepkiewicz P, Thankachen J, Bodine P and D'Armiento J: The
divergent roles of secreted frizzled related protein-1 (SFRP1) in
lung morphogenesis and emphysema. Am J Pathol. 177:598–607. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Joesting MS, Cheever TR, Volzing KG,
Yamaguchi TP, Wolf V, Naf D, Rubin JS and Marker PC: Secreted
frizzled related protein 1 is a paracrine modulator of epithelial
branching morphogenesis, proliferation, and secretory gene
expression in the prostate. Dev Biol. 317:161–173. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Matsuyama M, Aizawa S and Shimono A: Sfrp
controls apicobasal polarity and oriented cell division in
developing gut epithelium. PLoS Genet. 5:e10004272009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Suzuki H, Gabrielson E, Chen W, Anbazhagan
R, van Engeland M, Weijenberg MP, Herman JG and Baylin SB: A
genomic screen for genes upregulated by demethylation and histone
deacetylase inhibition in human colorectal cancer. Nat Genet.
31:141–149. 2002. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chung MT, Lai HC, Sytwu HK, Yan MD, Shih
YL, Chang CC, Yu MH, Liu HS, Chu DW and Lin YW: SFR P1 and SFRP2
suppress the transformation and invasion abilities of cervical
cancer cells through Wnt signal pathway. Gynecol Oncol.
112:646–653. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Valencia A, Román-Gómez J, Cervera J, Such
E, Barragán E, Bolufer P, Moscardó F, Sanz GF and Sanz MA: Wnt
signaling pathway is epigenetically regulated by methylation of Wnt
antagonists in acute myeloid leukemia. Leukemia. 23:1658–1666.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fukui T, Kondo M, Ito G, Maeda O, Sato N,
Yoshioka H, Yokoi K, Ueda Y, Shimokata K and Sekido Y:
Transcriptional silencing of secreted frizzled related protein 1
(SFRP 1) by promoter hypermethylation in non-small-cell lung
cancer. Oncogene. 24:6323–6327. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ugolini F, Charafe-Jauffret E, Bardou VJ,
Geneix J, Adélaïde J, Labat-Moleur F, Penault-Llorca F, Longy M,
Jacquemier J, Birnbaum D, et al: WNT pathway and mammary
carcinogenesis: Loss of expression of candidate tumor suppressor
gene SFRP1 in most invasive carcinomas except of the medullary
type. Oncogene. 20:5810–5817. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu
J, Klijn JG, Foekens JA and Martens JW: Subtypes of breast cancer
show preferential site of relapse. Cancer Res. 68:3108–3114. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mii Y and Taira M: Secreted
frizzled-related proteins enhance the diffusion of Wnt ligands and
expand their signalling range. Development. 136:4083–4088. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Katoh Y and Katoh M: Hedgehog signaling,
epithelial-to-mesenchymal transition and miRNA (Review). Int J Mol
Med. 22:271–275. 2008.PubMed/NCBI
|
18
|
He J, Sheng T, Stelter AA, Li C, Zhang X,
Sinha M, Luxon BA and Xie J: Suppressing Wnt signaling by the
hedgehog pathway through sFRP-1. J Biol Chem. 281:35598–35602.
2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Häusler KD, Horwood NJ, Chuman Y, Fisher
JL, Ellis J, Martin TJ, Rubin JS and Gillespie MT: Secreted
frizzled-related protein-1 inhibits RANKL-dependent osteoclast
formation. J Bone Miner Res. 19:1873–1881. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Esteve P and Bovolenta P: The advantages
and disadvantages of sfrp1 and sfrp2 expression in pathological
events. Tohoku J Exp Med. 221:11–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
De Toni F, Racaud-Sultan C, Chicanne G,
Mas VM, Cariven C, Mesange F, Salles JP, Demur C, Allouche M,
Payrastre B, et al: A crosstalk between the Wnt and the
adhesion-dependent signaling pathways governs the chemosensitivity
of acute myeloid leukemia. Oncogene. 25:3113–3122. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hohenberger P and Gretschel S: Gastric
cancer. Lancet. 362:305–315. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Smith DD, Schwarz RR and Schwarz RE:
Impact of total lymph node count on staging and survival after
gastrectomy for gastric cancer: Data from a large US-population
database. J Clin Oncol. 23:7114–7124. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qu Y, Ray PS, Li J, Cai Q, Bagaria SP,
Moran C, Sim MS, Zhang J, Turner RR, Zhu Z, et al: High levels of
secreted frizzled-related protein 1 correlate with poor prognosis
and promote tumourigenesis in gastric cancer. Eur J Cancer.
49:3718–3728. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Saini S, Liu J, Yamamura S, Majid S,
Kawakami K, Hirata H and Dahiya R: Functional significance of
secreted frizzled-related protein 1 in metastatic renal cell
carcinomas. Cancer Res. 69:6815–6822. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Subauste MC, Von Herrath M, Benard V,
Chamberlain CE, Chuang TH, Chu K, Bokoch GM and Hahn KM: Rho family
proteins modulate rapid apoptosis induced by cytotoxic T
lymphocytes and Fas. J Biol Chem. 275:9725–9733. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou BP, Deng J, Xia W, Xu J, Li YM,
Gunduz M and Hung MC: Dual regulation of Snail by
GSK-3beta-mediated phosphorylation in control of
epithelial-mesenchymal transition. Nat Cell Biol. 6:931–940. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gao S, Alarcón C, Sapkota G, Rahman S,
Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P and
Massagué J: Ubiquitin ligase Nedd4L targets activated Smad2/3 to
limit TGF-beta signaling. Mol Cell. 36:457–468. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Labbé E, Silvestri C, Hoodless PA, Wrana
JL and Attisano L: Smad2 and Smad3 positively and negatively
regulate TGF beta-dependent transcription through the forkhead
DNA-binding protein FAST2. Mol Cell. 2:109–120. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hata A, Lo RS, Wotton D, Lagna G and
Massague J: Mutations increasing autoinhibition inactivate tumour
suppressors Smad2 and Smad4. Nature. 388:82–87. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Frame MC and Brunton VG: Advances in
Rho-dependent actin regulation and oncogenic transformation. Curr
Opin Genet Dev. 12:36–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ren J, Wang R, Song H, Huang G and Chen L:
Secreted frizzled related protein 1 modulates taxane resistance of
human lung adenocarcinoma. Mol Med. 20:164–178. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Koivisto L, Häkkinen L, Matsumoto K,
McCulloch CA, Yamada KM and Larjava H: Glycogen synthase kinase-3
regulates cytoskeleton and translocation of Rac1 in long cellular
extensions of human keratinocytes. Exp Cell Res. 293:68–80. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Abe K, Rossman KL, Liu B, Ritola KD,
Chiang D, Campbell SL, Burridge K and Der CJ: Vav2 is an activator
of Cdc42, Rac1, and RhoA. J Biol Chem. 275:10141–10149. 2000.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao Y, Dickerson JB, Guo F, Zheng J and
Zheng Y: Rational design and characterization of a Rac
GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA.
101:7618–7623. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Schmöle AC, Brennführer A, Karapetyan G,
Jaster R, Pews-Davtyan A, Hübner R, Ortinau S, Beller M, Rolfs A
and Frech MJ: Novel indolylmaleimide acts as GSK-3beta inhibitor in
human neural progenitor cells. Bioorg Med Chem. 18:6785–6795. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Pan Y, Bi F, Liu N, Xue Y, Yao X, Zheng Y
and Fan D: Expression of seven main Rho family members in gastric
carcinoma. Biochem Biophys Res Commun. 315:686–691. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Matsuoka T, Yashiro M, Kato Y, Shinto O,
Kashiwagi S and Hirakawa K: RhoA/ROCK signaling mediates plasticity
of scirrhous gastric carcinoma motility. Clin Exp Metastasis.
28:627–636. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tang QL, Xie XB, Wang J, Chen Q, Han AJ,
Zou CY, Yin JQ, Liu DW, Liang Y, Zhao ZQ, et al: Glycogen synthase
kinase-3β, NF-κB signaling, and tumorigenesis of human
osteosarcoma. J Natl Cancer Inst. 104:749–763. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shakoori A, Mai W, Miyashita K, Yasumoto
K, Takahashi Y, Ooi A, Kawakami K and Minamoto T: Inhibition of
GSK-3 beta activity attenuates proliferation of human colon cancer
cells in rodents. Cancer Sci. 98:1388–1393. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hu H, Wang YL, Wang GW, Wong YC, Wang XF,
Wang Y and Xu KX: A novel role of Id-1 in regulation of
epithelial-to-mesenchymal transition in bladder cancer. Urol Oncol.
31:1242–1253. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sánchez-Tilló E, Siles L, de Barrios O,
Cuatrecasas M, Vaquero EC, Castells A and Postigo A: Expanding
roles of ZEB factors in tumorigenesis and tumor progression. Am J
Cancer Res. 1:897–912. 2011.PubMed/NCBI
|
45
|
Ungefroren H, Groth S, Sebens S, Lehnert
H, Gieseler F and Fändrich F: Differential roles of Smad2 and Smad3
in the regulation of TGF-β1-mediated growth inhibition and cell
migration in pancreatic ductal adenocarcinoma cells: Control by
Rac1. Mol Cancer. 10:672011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Guo X, Ramirez A, Waddell DS, Li Z, Liu X
and Wang XF: Axin and GSK3-control Smad3 protein stability and
modulate TGF-signaling. Genes Dev. 22:106–120. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wrana JL, Attisano L, Cárcamo J, Zentella
A, Doody J, Laiho M, Wang XF and Massagué J: TGF beta signals
through a heteromeric protein kinase receptor complex. Cell.
71:1003–1014. 1992. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cohen-Solal KA, Merrigan KT, Chan JL,
Goydos JS, Chen W, Foran DJ, Liu F, Lasfar A and Reiss M:
Constitutive Smad linker phosphorylation in melanoma: A mechanism
of resistance to transforming growth factor-β-mediated growth
inhibition. Pigment Cell Melanoma Res. 24:512–524. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Schnelzer A, Prechtel D, Knaus U, Dehne K,
Gerhard M, Graeff H, Harbeck N, Schmitt M and Lengyel E: Rac1 in
human breast cancer: Overexpression, mutation analysis, and
characterization of a new isoform, Rac1b. Oncogene. 19:3013–3020.
2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fritz G, Just I and Kaina B: Rho GTPases
are over-expressed in human tumors. Int J Cancer. 81:682–687. 1999.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhu G, Wang Y, Huang B, Liang J, Ding Y,
Xu A and Wu W: A Rac1/PAK1 cascade controls β-catenin activation in
colon cancer cells. Oncogene. 31:1001–1012. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kamai T, Shirataki H, Nakanishi K, Furuya
N, Kambara T, Abe H, Oyama T and Yoshida K: Increased Rac1 activity
and Pak1 overexpression are associated with lymphovascular invasion
and lymph node metastasis of upper urinary tract cancer. BMC
Cancer. 10:1642010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhan H, Liang H, Liu X, Deng J, Wang B and
Hao X: Expression of Rac1, HIF-1α, and VEGF in gastric carcinoma:
Correlation with angiogenesis and prognosis. Onkologie. 36:102–107.
2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wu YJ, Tang Y, Li ZF, Li Z, Zhao Y, Wu ZJ
and Su Q: Expression and significance of Rac1, Pak1 and Rock1 in
gastric carcinoma. Asia Pac J Clin Oncol. 10:e33–e39. 2014.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Steffen A, Ladwein M, Dimchev GA, Hein A,
Schwenkmezger L, Arens S, Ladwein KI, Margit Holleboom J, Schur F,
Victor Small J, et al: Rac function is critical for cell migration
but not required for spreading and focal adhesion formation. J Cell
Sci. 126:4572–4588. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lewis-Saravalli S, Campbell S and Claing
A: ARF1 controls Rac1 signaling to regulate migration of MDA-MB-231
invasive breast cancer cells. Cell Signal. 25:1813–1819. 2013.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang J, Rao Q, Wang M, Wei H, Xing H, Liu
H, Wang Y, Tang K, Peng L, Tian Z, et al: Overexpression of Rac1 in
leukemia patients and its role in leukemia cell migration and
growth. Biochem Biophys Res Commun. 386:769–774. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Fritz G and Kaina B: Rac1 GTPase, a
multifunctional player in the regulation of genotoxic stress
response. Cell Cycle. 12:2521–2522. 2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Qiu RG, Abo A, McCormick F and Symons M:
Cdc42 regulates anchorage-independent growth and is necessary for
Ras transformation. Mol Cell Biol. 17:3449–3458. 1997. View Article : Google Scholar : PubMed/NCBI
|
60
|
Cho YJ, Yoon J, Ko YS, Kim SY, Cho SJ, Kim
WH, Park JW, Youn HD, Kim JH and Lee BL: Glycogen synthase
kinase-3β does not correlate with the expression and activity of
β-catenin in gastric cancer. APMIS. 118:782–790. 2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Esufali S, Charames GS and Bapat B:
Suppression of nuclear Wnt signaling leads to stabilization of Rac1
isoforms. FEBS Lett. 581:4850–4856. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Binker MG, Binker-Cosen AA, Gaisano HY, de
Cosen RH and Cosen-Binker LI: TGF-β1 increases invasiveness of
SW1990 cells through Rac1/ROS/NF-kB/IL-6/MMP-2. Biochem Biophys Res
Commun. 405:140–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Bachman KE and Park BH: Duel nature of
TGF-beta signaling: Tumor suppressor vs. tumor promoter. Curr Opin
Oncol. 17:49–54. 2005. View Article : Google Scholar : PubMed/NCBI
|
64
|
Akhurst RJ and Derynck R: TGF-beta
signaling in cancer-a double-edged sword. Trends Cell Biol.
11:S44–S51. 2001. View Article : Google Scholar : PubMed/NCBI
|
65
|
Derynck R, Akhurst RJ and Balmain A:
TGF-beta signaling in tumor suppression and cancer progression. Nat
Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI
|
66
|
Hubchak SC, Sparks EE, Hayashida T and
Schnaper HW: Rac1 promotes TGF-beta-stimulated mesangial cell type
I collagen expression through a PI3K/Akt-dependent mechanism. Am J
Physiol Renal Physiol. 297:F1316–F1323. 2009. View Article : Google Scholar : PubMed/NCBI
|
67
|
Kondé E, Bourgeois B, Tellier-Lebegue C,
Wu W, Pérez J, Caputo S, Attanda W, Gasparini S, Charbonnier JB,
Gilquin B, et al: Structural analysis of the Smad2-MAN1 interaction
that regulates transforming growth factor-β signaling at the inner
nuclear membrane. Biochemistry. 49:8020–8032. 2010. View Article : Google Scholar : PubMed/NCBI
|
68
|
Wrighton KH, Willis D, Long J, Liu F, Lin
X and Feng XH: Small C-terminal domain phosphatases dephosphorylate
the regulatory linker regions of Smad2 and Smad3 to enhance
transforming growth factor-beta signaling. J Biol Chem.
281:38365–38375. 2006. View Article : Google Scholar : PubMed/NCBI
|
69
|
Shepherd RD, Kos SM and Rinker KD:
Flow-dependent Smad2 phosphorylation and TGIF nuclear localization
in human aortic endothelial cells. Am J Physiol Heart Circ Physiol.
301:H98–H107. 2011. View Article : Google Scholar : PubMed/NCBI
|