1
|
Locatelli F, Schrappe M, Bernardo ME and
Rutella S: How I treat relapsed childhood acute lymphoblastic
leukemia. Blood. 120:2807–2816. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bhojwani D and Pui CH: Relapsed childhood
acute lymphoblastic leukaemia. Lancet Oncol. 14:e205–e217. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hunger SP, Lu X, Devidas M, Camitta BM,
Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival
for children and adolescents with acute lymphoblastic leukemia
between 1990 and 2005: A report from the children's oncology group.
J Clin Oncol. 30:1663–1669. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhu YM, Foroni L, McQuaker IG, Papaioannou
M, Haynes A and Russell HH: Mechanisms of relapse in acute
leukaemia: Involvement of p53 mutated subclones in disease
progression in acute lymphoblastic leukaemia. Br J Cancer.
79:1151–1157. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Maloney KW, McGavran L, Odom LF and Hunger
SP: Acquisition of p16INK4A and p15INK4B gene
abnormalities between initial diagnosis and relapse in children
with acute lymphoblastic leukemia. Blood. 93:2380–2385.
1999.PubMed/NCBI
|
6
|
Zuna J: TEL deletion analysis supports a
novel view of relapse in childhood acute lymphoblastic leukemia.
Clin Cancer Res. 10:5355–5360. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sewak MS, Reddy NP and Duan ZH: Gene
expression based leukemia sub-classification using committee neural
networks. Bioinform Biol Insights. 3:89–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Harvey RC, Mullighan CG, Wang X, Dobbin
KK, Davidson GS, Bedrick EJ, Chen IM, Atlas SR, Kang H, Ar K, et
al: Identification of novel cluster groups in pediatric high-risk
B-precursor acute lymphoblastic leukemia with gene expression
profiling: Correlation with genome-wide DNA copy number
alterations, clinical characteristics, and outcome. Blood.
116:4874–4884. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hogan LE, Meyer JA, Yang J, Wang J, Wong
N, Yang W, Condos G, Hunger SP, Raetz E, Saffery R, et al:
Integrated genomic analysis of relapsed childhood acute
lymphoblastic leukemia reveals therapeutic strategies. Blood.
118:5218–5226. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Staal FJ, van der Burg M, Wessels LF,
Barendregt BH, Baert MR, van den Burg CM, van Huffel C, Langerak
AW, van der Velden VH, Reinders MJ, et al: DNA microarrays for
comparison of gene expression profiles between diagnosis and
relapse in precursor-B acute lymphoblastic leukemia: Choice of
technique and purification influence the identification of
potential diagnostic markers. Leukemia. 17:1324–1332. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kang H, Chen IM, Wilson CS, Bedrick EJ,
Harvey RC, Atlas SR, Devidas M, Mullighan CG, Wang X, Murphy M, et
al: Gene expression classifiers for relapse-free survival and
minimal residual disease improve risk classification and outcome
prediction in pediatric B-precursor acute lymphoblastic leukemia.
Blood. 115:1394–1405. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kohlmann A, Kipps TJ, Rassenti LZ, Downing
JR, Shurtleff SA, Mills KI, Gilkes AF, Hofmann WK, Basso G,
Dell'orto MC, et al: An international standardization programme
towards the application of gene expression profiling in routine
leukaemia diagnostics: The microarray innovations in LEukemia study
prephase. Br J Haematol. 142:802–807. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Haferlach T, Kohlmann A, Wieczorek L,
Basso G, Kronnie GT, Béné MC, De Vos J, Hernández JM, Hofmann WK,
Mills KI, et al: Clinical utility of microarray-based gene
expression profiling in the diagnosis and subclassification of
leukemia: Report from the international microarray innovations in
leukemia Study Group. J Clin Oncol. 28:pp. 2529–2537. 2010,
View Article : Google Scholar : PubMed/NCBI
|
14
|
Beesley AH, Cummings AJ, Freitas JR,
Hoffmann K, Firth MJ, Ford J, de Klerk NH and Kees UR: The gene
expression signature of relapse in paediatric acute lymphoblastic
leukaemia: Implications for mechanisms of therapy failure. Br J
Haematol. 131:447–456. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
McCall MN, Jaffee HA and Irizarry RA: fRMA
ST Frozen robust multiarray analysis for Affymetrix Exon and Gene
ST arrays. Bioinformatics. 28:3153–3154. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. Omi A J Integr Biol. 16:284–287. 2012. View Article : Google Scholar
|
18
|
Campbell DJ, Kim CH and Butcher EC:
Chemokines in the systemic organization of immunity. Immunol Rev.
195:58–71. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Burkle A, Niedermeier M, Schmitt-Graff A,
Wierda WG, Keating MJ and Burger JA: Overexpression of the CXCR5
chemokine receptor, and its ligand, CXCL13 in B-cell chronic
lymphocytic leukemia. Blood. 110:3316–3325. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
López-Giral S, Quintana NE, Cabrerizo M,
Alfonso-Pérez M, Sala-Valdés M, De Soria VG, Fernández-Rañada JM,
Fernández-Ruiz E and Muñoz C: Chemokine receptors that mediate B
cell homing to secondary lymphoid tissues are highly expressed in B
cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with
widespread nodular dissemination. J Leukoc Biol. 76:462–471. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Jones D, Benjamin RJ, Shahsafaei A and
Dorfman DM: The chemokine receptor CXCR3 is expressed in a subset
of B-cell lymphomas and is a marker of B-cell chronic lymphocytic
leukemia. Blood. 95:627–32. 2000.PubMed/NCBI
|
22
|
Qiuping Z, Jei X, Youxin J, Wei J, Chun L,
Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, et al: CC chemokine
ligand 25 enhances resistance to apoptosis in CD4+ T
cells from patients with T-cell lineage acute and chronic
lymphocytic leukemia by means of livin activation. Cancer Res.
64:7579–7587. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Burger JA and Peled A: CXCR4 antagonists:
Targeting the microenvironment in leukemia and other cancers.
Leukemia. 23:43–52. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stam RW, Den Boer ML, Schneider P, de Boer
J, Hagelstein J, Valsecchi MG, de Lorenzo P, Sallan SE, Brady HJ,
Armstrong SA, et al: Association of high-level MCL-1 expression
with in vitro and in vivo prednisone resistance in MLL-rearranged
infant acute lymphoblastic leukemia. Blood. 115:1018–1125. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Spijkers-Hagelstein JA, Schneider P,
Hulleman E, de Boer J, Williams O, Pieters R and Stam RW: Elevated
S100A8/S100A9 expression causes glucocorticoid resistance in
MLL-rearranged infant acute lymphoblastic leukemia. Leukemia.
26:1255–1165. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou H, Ma H, Wei W, Ji D, Song X, Sun J,
Zhang J and Jia L: B4GALT family mediates the multidrug resistance
of human leukemia cells by regulating the hedgehog pathway and the
expression of p-glycoprotein and multidrug resistance-associated
protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Epstein J, Xiao HQ and He XY: Markers of
multiple hematopoietic-cell lineages in multiple myeloma. N Engl J
Med. 322:664–668. 1990. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dunphy CH, Gardner LJ, Evans HL and Javadi
N: CD15+ acute lymphoblastic leukemia and subsequent
monoblastic leukemia: Persistence of t(4;11) abnormality and B-cell
gene rearrangement. Arch Pathol Lab Med. 125:1227–1230.
2001.PubMed/NCBI
|
29
|
Rozovskaia T, Feinstein E, Mor O, Foa R,
Blechman J, Nakamura T, Croce CM, Cimino G and Canaani E:
Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with
the t(4:11) abnormality. Oncogene. 20:874–878. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Burmeister T, Meyer C, Schwartz S, Hofmann
J, Molkentin M, Kowarz E, Schneider B, Raff T, Reinhardt R,
Gökbuget N, et al: The MLL recombinome of adult CD10-negative
B-cell precursor acute lymphoblastic leukemia: Results from the
GMALL study group. Blood. 113:4011–4015. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gleissner B, Goekbuget N, Rieder H, Arnold
R, Schwartz S, Diedrich H, Schoch C, Heinze B, Fonatsch C, Bartram
CR, et al: CD10− pre-B acute lymphoblastic leukemia
(ALL) is a distinct high-risk subgroup of adult ALL associated with
a high frequency of MLL aberrations: Results of the german
multicenter trials for adult ALL (GMALL). Blood. 106:4054–4056.
2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ha K, Hozumi N, Hrincu A and Gelfand EW:
Lineage specific classification of leukaemia: Results of the
analysis of sixty cases of childhood leukaemia. Br J Haematol.
61:237–249. 1985. View Article : Google Scholar : PubMed/NCBI
|
33
|
Suzuki R, Sakamoto H, Yasukawa H, Masuhara
M, Wakioka T, Sasaki A, Yuge K, Komiya S, Inoue A and Yoshimura A:
CI S3 and JAB have different regulatory roles in interleukin-6
mediated differentiation and STAT3 activation in M1 leukemia cells.
Oncogene. 17:2271–2278. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen C, Yu K, Yan QX, Xing CY, Chen Y, Yan
Z, Shi YF, Zhao KW and Gao SM: Pure curcumin increases the
expression of SOCS1 and SOCS3 in myeloproliferative neoplasms
through suppressing class I histone deacetylases. Carcinogenesis.
34:1442–1449. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Komyod W, Böhm M, Metze D, Heinrich PC and
Behrmann I: Constitutive suppressor of cytokine signaling 3
expression confers a growth advantage to a human melanoma cell
line. Mol Cancer Res. 5:271–281. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lesinski GB, Zimmerer JM, Kreiner M,
Trefry J, Bill MA, Young GS, Becknell B and Carson WE III:
Modulation of SOCS protein expression influences the interferon
responsiveness of human melanoma cells. BMC Cancer. 10:1422010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tokita T, Maesawa C, Kimura T, Kotani K,
Takahashi K, Akasaka T and Masuda T: Methylation status of the
SOCS3 gene in human malignant melanomas. Int J Oncol. 30:689–694.
2007.PubMed/NCBI
|
38
|
Fojtova M, Boudny V, Kovarik A, Lauerova
L, Adamkova L, Souckova K, Jarkovsky J and Kovarik J: Development
of IFN-gamma resistance is associated with attenuation of SOCS
genes induction and constitutive expression of SOCS 3 in melanoma
cells. Br J Cancer. 97:231–237. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shivapurkar N, Sherman ME, Stastny V,
Echebiri C, Rader JS, Nayar R, Bonfiglio TA, Gazdar AF and Wang SS:
Evaluation of candidate methylation markers to detect cervical
neoplasia. Gynecol Oncol. 107:549–553. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang P, Yang B, Yao YY, Zhong LX, Chen
XY, Kong QY, Wu ML, Li C, Li H and Liu J: PIA S3SH P2 and SOCS3
Expression patterns in Cervical Cancers: Relevance with activation
and resveratrol-caused inactivation of STAT3 signaling. Gynecol
Oncol. 139:529–535. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim MH, Kim MS, Kim W, Kang MA, Cacalano
NA, Kang SB, Shin YJ and Jeong JH: Suppressor of cytokine signaling
(SOCS) genes are silenced by DNA hypermethylation and histone
deacetylation and regulate response to radiotherapy in cervical
cancer cells. PLoS One. 10:e01231332015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Urbschat A, Stumpf S, Hänze J, Paulus P,
Maier TJ, Weipert C, Hofmann R and Hegele A: Expression of the
anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) in
human clear cell renal cell carcinoma. Tumour Biol. 37:9649–9656.
2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Stofas A, Levidou G, Piperi C, Adamopoulos
C, Dalagiorgou G, Bamias A, Karadimou A, Lainakis GA, Papadoukakis
S, Stravodimos K, et al: The role of CXC-chemokine receptor CXCR2
and suppressor of cytokine signaling-3 (SOCS-3) in renal cell
carcinoma. BMC Cancer. 14:1492014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tomita S, Ishibashi K, Hashimoto K, Sugino
T, Yanagida T, Kushida N, Shishido K, Aikawa K, Sato Y, Suzutani T,
et al: Suppression of SOCS3 increases susceptibility of renal cell
carcinoma to interferon-α. Cancer Sci. 102:57–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Oguro T, Ishibashi K, Sugino T, Hashimoto
K, Tomita S, Takahashi N, Yanagida T, Haga N, Aikawa K, Suzutani T,
et al: Humanised antihuman IL-6R antibody with interferon inhibits
renal cell carcinoma cell growth in vitro and in vivo through
suppressed SOCS3 expression. Eur J Cancer. 49:1715–1724. 2013.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Neuwirt H, Puhr M, Cavarretta IT,
Mitterberger M, Hobisch A and Culig Z: Suppressor of cytokine
signalling-3 is up-regulated by androgen in prostate cancer cell
lines and inhibits androgen-mediated proliferation and secretion.
Endocr Relat Cancer. 14:1007–1019. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kneitz B, Krebs M, Kalogirou C, Schubert
M, Joniau S, van Poppel H, Lerut E, Kneitz S, Scholz CJ, Ströbel P,
et al: Survival in patients with high-risk prostate cancer is
predicted by miR-221, which regulates proliferation, apoptosis, and
invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.
Cancer Res. 74:2591–2603. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li G, Xu J, Wang Z, Yuan Y, Li Y, Cai S
and He Y: Low expression of SOCS-1 and SOCS-3 is a poor prognostic
indicator for gastric cancer patients. J Cancer Res Clin Oncol.
141:443–452. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lien HC, Lin CW, Huang PH, Chang ML and
Hsu SM: Expression of cyclin-dependent kinase 6 (cdk6) and frequent
loss of CD44 in nasal-nasopharyngeal NK/T-cell lymphomas:
Comparison with CD56-negative peripheral T-cell lymphomas. Lab
Invest. 80:893–900. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lee YH, Judge AD, Seo D, Kitade M,
Gómez-Quiroz LE, Ishikawa T, Andersen JB, Kim BK, Marquardt JU,
Raggi C, et al: Molecular targeting of CSN5 in human hepatocellular
carcinoma: A mechanism of therapeutic response. Oncogene.
30:4175–4184. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ouyang Q, Chen G, Zhou J, Li L, Dong Z,
Yang R, Xu L, Cui H, Xu M and Yi L: Neurotensin signaling
stimulates glioblastoma cell proliferation by upregulating c-Myc
and inhibiting miR-29b-1 and miR-129-3p. Neuro Oncol. 18:216–226.
2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Easton J, Wei T, Lahti JM and Kidd VJ:
Disruption of the cyclin D/cyclin-dependent
kinase/INK4/retinoblastoma protein regulatory pathway in human
neuroblastoma. Cancer Res. 58:2624–2632. 1998.PubMed/NCBI
|
53
|
Brandi G, Paiardini M, Cervasi B, Fiorucci
C, Filippone P, De Marco C, Zaffaroni N and Magnani M: A new
indole-3- carbinol tetrameric derivative inhibits cyclin-dependent
kinase 6 expression, and induces G1 cell cycle arrest in both
estrogen-dependent and estrogen-independent breast cancer cell
lines. Cancer Res. 63:4028–4036. 2003.PubMed/NCBI
|
54
|
Ye Y, Yang H, Grossman HB, Dinney C, Wu X
and Gu J: Genetic variants in cell cycle control pathway confer
susceptibility to bladder cancer. Cancer. 112:2467–2474. 2008.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Raffini LJ, Slater DJ, Rappaport EF, Lo
Nigro L, Cheung NK, Biegel JA, Nowell PC, Lange BJ and Felix CA:
Panhandle and reverse-panhandle PCR enable cloning of der(11) and
der(other) genomic breakpoint junctions of MLL translocations and
identify complex translocation of MLL, AF-4, and CDK6. Proc Natl
Acad Sci USA. 99:4568–4573. 2002. View Article : Google Scholar : PubMed/NCBI
|