Biological role of metabolic reprogramming of cancer cells during epithelial‑mesenchymal transition (Review)
- Authors:
- Mingzhe Li
- Xin Bu
- Bolei Cai
- Ping Liang
- Kai Li
- Xuan Qu
- Liangliang Shen
-
Affiliations: The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, Department of Clinical Laboratory, General Hospital of Xinjiang Military Command, Xinjiang 830000, P.R. China, School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China - Published online on: November 23, 2018 https://doi.org/10.3892/or.2018.6882
- Pages: 727-741
This article is mentioned in:
Abstract
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mayevsky A: Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion. 9:165–179. 2009. View Article : Google Scholar : PubMed/NCBI | |
Walenta S and Mueller-Klieser WF: Lactate: Mirror and motor of tumor malignancy. Semin Radiat Oncol. 14:267–274. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto S, Tsukada K, Sagara T, Kawachi Y, Murakami S and Iwama T: Human colorectal malignancy and oral UFT. Anticancer Res. 22:339–341. 2002.PubMed/NCBI | |
Santos CR and Schulze A: Lipid metabolism in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI | |
Furuta E, Okuda H, Kobayashi A and Watabe K: Metabolic genes in cancer: Their roles in tumor progression and clinical implications. Biochim Biophys Acta. 1805:141–152. 2010.PubMed/NCBI | |
Martin RM, Vatten L, Gunnell D, Romundstad P and Nilsen TI: Components of the metabolic syndrome and risk of prostate cancer: The HUNT 2 cohort, Norway. Cancer Causes Control. 20:1181–1192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Siegel AB and Zhu AX: Metabolic syndrome and hepatocellular carcinoma: Two growing epidemics with a potential link. Cancer. 115:5651–5661. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stocks T, Lukanova A, Johansson M, Rinaldi S, Palmqvist R, Hallmans G, Kaaks R and Stattin P: Components of the metabolic syndrome and colorectal cancer risk; A prospective study. Int J Obes. 32:304–314. 2008. View Article : Google Scholar | |
Kabat GC, Kim M, Chlebowski RT, Khandekar J, Ko MG, McTiernan A, Neuhouser ML, Parker DR, Shikany JM, Stefanick ML, et al: A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 18:2046–2053. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED and Thompson EW: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 213:374–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Foroni C, Broggini M, Generali D and Damia G: Epithelial-mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact. Cancer Treat Rev. 38:689–697. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP: Epithelial-mesenchymal transition in development and pathologies. Curr Opin Cell Biol. 15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Christofori G and Semb H: The role of the cell-adhesion molecule E-cadherin a tumour-suppresor gene. Trends Biochemci Sci. 24:73–76. 1999. View Article : Google Scholar | |
Hiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Boyer B, Valls AM and Edme N: Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol. 60:1091–1099. 2000. View Article : Google Scholar : PubMed/NCBI | |
Saitoh M and Miyazawa K: Transcriptional and post-transcriptional regulation in TGF-β-mediated epithelial-mesenchymal transition. J Biochem. 151:563–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gradl D, Kuhl M and Wedlich D: The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol. 19:5576–5587. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P and Foidart JM: Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 63:2658–2664. 2003.PubMed/NCBI | |
Wang Z, Li Y, Kong D and Sarkar FH: The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 11:745–751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kume T: The role of FoxC2 transcription factor in tumor angiogenesis. J Oncol. 2012:2045932012. View Article : Google Scholar : PubMed/NCBI | |
Harris TJ and Tepass U: Adherens junctions: From molecules to morphogenesis. Nat Rev Mol Cell Biol. 11:502–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM and Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–2947. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M, Xu LM, Costanzo C, Cheng JQ and Wang LH: Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem. 283:14665–14673. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cairns R, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg R: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Christiansen JJ and Rajasekaran AK: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N and Groffen J: Abnormal lung development and cleft palate in mice lacking TGF-beta-3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 11:415–421. 1995. View Article : Google Scholar : PubMed/NCBI | |
Khoury H, Dankort DL, Sadekova S, Naujokas MA, Muller WJ and Park M: Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene. 20:788–799. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lester RD, Jo M, Montel V, Takimoto S and Gonias SL: uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gheldof A and Berx G: Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 116:317–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tiwari N, Gheldof A, Tatari M and Christofori G: EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 22:194–207. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takai E, Tan X, Tamori Y, Hirota M, Egami H and Ogawa M: Correlation of translocation of tight junction protein Zonula occludens-1 and activation of epidermal growth factor receptor in the regulation of invasion of pancreatic cancer cells. Int J Oncol. 27:645–651. 2005.PubMed/NCBI | |
Ryeom SW, Paul D and Goodenough DA: Truncation mutants of the tight junction protein ZO-1 disrupt corneal epithelial cell morphology. Mol Biol Cell. 11:1687–1697. 2000. View Article : Google Scholar : PubMed/NCBI | |
Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, et al: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 436:123–127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y and Miyazaki K: Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 90:1265–1273. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Sugiura H, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ and Boothman DA: Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene. 34:3908–3916. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY and Guan KL: TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem. 284:13355–13362. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zheng H and Kang Y: Multilayer control of the EMT master regulators. Oncogene. 33:1755–1763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shi J, Chai K, Ying X and Zhou BP: The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 13:963–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin CY, Tsai PH, Kandaswami CC, Lee PP, Huang CJ, Hwang JJ and Lee MT: Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci. 102:815–827. 2011. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi M, Sato M and Ozawa M: CRISPR/Cas9n-mediated deletion of the snail 1gene (SNAI1) reveals its role in regulating cell morphology, cell-cell interactions, and gene expression in ovarian cancer (RMG-1) cells. PLoS One. 10:e01322602015. View Article : Google Scholar : PubMed/NCBI | |
Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS, Cho ES, Zhang X, Nam M, et al: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 8:143742017. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Sun L, Li Q, Han X, Lei L, Zhang H and Shang Y: SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 31:110–123. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z, Yang CJ, Yuan L and Ouyang G: Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 30:4707–4720. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tania M, Khan MA and Fu J: Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol. 35:7335–7342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, Helfrich BA, Garrett-Mayer E, Bunn PA and Drabkin HA: ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 300:66–78. 2011. View Article : Google Scholar : PubMed/NCBI | |
Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T, Knutsen E, Barkovskaya A, Hilmarsdottir B, Perander M, Mælandsmo GM, et al: Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett. 396:117–129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, et al: Loss of FBP1 by Snail-mediated repression provides metabolic advantages in Basal-like breast cancer. Cancer Cell. 23:316–331. 2013. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Posener K and Negelein E: Ueber den stoffwechsel der tumoren. Biochemische Zeitschrif. 152:319–344. 1924.(In German). | |
Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T, Bouzin C, et al: A mitochondrial switch promotes tumor metastasis. Cell Rep. 8:754–766. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wood T: Physiological functions of the pentose phosphate pathway. Cell Biochem Funct. 4:241–247. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schieber MS and Chandel NS: ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell. 23:265–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu HW, Zhu X, Zhang J, Zhang XB and Tan W: A red emitting two-photon fluorescent probe for dynamic imaging of redox balance meditated by a superoxide anion and GSH in living cells and tissues. Analyst. 141:5893–5899. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Locasale JW: Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer. 13:572–583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luka Z, Mudd SH and Wagner C: Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem. 284:22507–22511. 2009. View Article : Google Scholar : PubMed/NCBI | |
McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A III, Diaz E, et al: EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 492:108–112. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cook CC, Kim A, Terao S, Gotoh A and Higuchi M: Consumption of oxygen: A mitochondrial generated progression signal of advanced cancer. Cell Death Dis. 3:e2582012. View Article : Google Scholar : PubMed/NCBI | |
Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouysségur J and Mazure NM: Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol. 222:648–657. 2010.PubMed/NCBI | |
Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M and Lu J: Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 32:1893–1907. 2012. View Article : Google Scholar : PubMed/NCBI | |
Andersen JL and Kornbluth S: Mcl-1 rescues a glitch in the matrix. Nat Cell Biol. 14:563–565. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morandi A, Taddei ML, Chiarugi P and Giannoni E: Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front Oncol. 7:402017. View Article : Google Scholar : PubMed/NCBI | |
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 9:3506–3514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Doherty JR and Cleveland JL: Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 123:3685–3692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Quek LE, Sultani G and Turner N: Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab. 4:192016. View Article : Google Scholar : PubMed/NCBI | |
Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA and Mueller-Klieser W: Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol. 39:453–463. 2011.PubMed/NCBI | |
Sotnik JL, Lori JC, Rose BJ and Thamm DH: Glycolysis inhibition by 2-deoxy-D-glucose reverts the metastatic phenotype in vitro and in vivo. Clin Exp Metastasis. 28:865–875. 2011. View Article : Google Scholar : PubMed/NCBI | |
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI | |
David CJ, Chen M, Assanah M, Canoll P and Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 463:364–368. 2010. View Article : Google Scholar : PubMed/NCBI | |
Christofk HR, Vander HM, Wu N, Asara JM and Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 452:181–186. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hittosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et al: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2:ra732009. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:232–744. 2011. View Article : Google Scholar | |
Elisa G, Maria LT, Andrea M, Comito G, Calvani M, Bianchini F, Richichi B, Raugei G, Wong N, Tang D and Chiarugi P: Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread. Oncotarget. 6:24061–24074. 2015.PubMed/NCBI | |
Zhan C, Shi Y, Lu C and Wang Q: Pyruvate kinase M2 is highly correlated with the differentiation and the prognosis of esophageal squamous cell cancer. Dis Esophagus. 26:746–753. 2013.PubMed/NCBI | |
Li J, Yang Z, Zou Q, Yuan Y, Li J, Liang L, Zeng G and Chen S: PKM2 and ACVR 1C are prognostic markers for poor prognosis of gallbladder cancer. Clin Transl Oncol. 16:200–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Gao Y, Wang C, Yu X, Zhang W, Guan H, Shan Z and Teng W: Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 98:E1524–E1533. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goldberg MS and Sharp PA: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 209:217–224. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yoo YG, Christensen J, Gu J and Huang LE: HIF-1α mediates tumor hypoxia to confer a perpetual mesenchymal phenotype for malignant progression. Sci Signal. 4:pt42011. View Article : Google Scholar : PubMed/NCBI | |
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network down stream of m TOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Icard P, Kafara P, Steyaert JM, Schwartz L and Lincet H: The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta. 1846:216–225. 2014.PubMed/NCBI | |
Wu CY, Tsai YP, Wu MZ, Teng SC and Wu KJ: Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet. 28:454–463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song IS, Wang AG, Yoon SY, Kim JM, Kim JH, Lee DS and Kim NS: Regulation of glucose metabolism-related genes and VEGF by HIF-1alpha and HIF-1beta, but not HIF-2alpha, in gastric cancer. Exp Mol Med. 41:51–58. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M and Harada H: HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 4:37932014. View Article : Google Scholar : PubMed/NCBI | |
Psaila B and Lyden D: The metastatic niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009. View Article : Google Scholar : PubMed/NCBI | |
Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 15:35–44. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ippolito L, Marini A, Cavallini L, Morandi A, Pietrovito L, Pintus G, Giannoni E, Schrader T, Puhr M, Chiarugi P and Taddei ML: Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget. 7:61890–61904. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mashek DG and Coleman RA: Cellular fatty acid uptake: The contribution of metabolism. Curr Opin Lipidol. 17:274–278. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zechner R, Strauss JG, Haemmerle G, Lass A and Zimmermann R: Lipolysis: Pathway under construction. Curr Opin Lipidol. 16:333–340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Vellon L, Oza BP and Lupu R: Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her-2/neu oncogene. J Cell Biochem. 94:857–863. 2005. View Article : Google Scholar : PubMed/NCBI | |
Swierczyński J and Sledziński T: Metabolic and regulatory function of fatty acid synthase. Postepy Biochem. 58:175–185. 2012.(In Polish). PubMed/NCBI | |
Jeong NY, Lee JS, Yoo KS, Oh S, Choe E, Lee HJ, Park BS, Choi YH and Yoo YH: Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Apoptosis. 18:226–237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T and Birchmeier W: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 4:222–231. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li J, Dong L, Wei D, Wang X, Zhang S and Li H: Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 10:171–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rakheja D, Kapur P, Hoang MP, Roy LC and Bennett MJ: Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: Implications for cryotherapy and lipid raft function. Med Hypotheses. 65:1120–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ikonnen E: Roles of lipid rafts in membrane transport. Curr Oppin Cell Biol. 13:470–477. 2001. View Article : Google Scholar | |
Russell DW: The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pelton K, Freeman MR and Solomon KR: Cholesterol and cancer. Curr Opin Pharmacol. 12:751–759. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kitahara CM, Berrington de González A, Freeman ND, Huxley R, Mok Y, Jee SH and Samet JM: Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 29:1592–1598. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alikhani N, Ferguson RD, Novosyadlyy R, Gallagher EJ, Scheinman EJ, Yakar S and LeRoith D: Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model. Oncogene. 32:961–967. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nielsen SF, Nordestgaard BG and Bojesen SE: Statin use and reduced cancer-related mortality. N Engl J Med. 367:1792–1802. 2012. View Article : Google Scholar : PubMed/NCBI | |
Taras D, Blanc JF, Rullier A, Dugot-Senant N, Laurendeau I, Vidaud M and Rosenbaum J: Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity. J Hepatol. 46:69–76. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang Z, Xie L, Xu L, Xu D and Liu X: Statins, autophagy and cancer metastasis. Int J Biochem Cell BIol. 45:745–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roy M, Kung HJ and Ghosh PM: Statins and prostate cancer: Role of cholesterol inhibition vs. prevention of small GTP-binding proteins. Am J Cancer Res. 1:542–561. 2011.PubMed/NCBI | |
Simons K and Ikonen E: Functional rafts in cell membranes. Nature. 387:569–572. 1997. View Article : Google Scholar : PubMed/NCBI | |
Freeman MR, Di Vizio D and Solomon KR: The Rafts of the Medusa: Cholesterol targeting in cancer therapy. Oncogene. 29:3745–3747. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patra SK: Dissecting lipid raft facilitated cell signaling pathways incancer. Biochim Biophys Acta. 1785:182–206. 2008.PubMed/NCBI | |
Mural T: The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol. 2012:7632832012.PubMed/NCBI | |
Rangaswami H, Bulbule A and Kundu GC: Osteopontin: Role in cell signaling and cancer progression. Trends Cell Biol. 16:79–87. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M and Sato C: Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem. 286:1999–2007. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nicholson RI, Gee JM and Harper ME: EGFR and cancer prognosis. Eur J Cancer. 37 Suppl 4:S9–S15. 2001. View Article : Google Scholar : PubMed/NCBI | |
Irwin ME, Mueller KL, Bohin N, Ge Y and Boerner JL: Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol. 226:2316–2328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Afshordel S, Kern B, Clasohm J, König H, Priester M, Weissenberger J, Kögel D and Eckert GP: Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration, and proliferation - impact of Ras-/Rho-prenylation. Pharmacol Res. 91:69–77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA, et al: 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 5:637–645. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hensley CT, Wasti AT and Deberardinis RJ: Glutamine and cancer: Cell biology, physiology and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, et al: SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 520:363–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roberts E and Frankel S: Free amino acid in normal and neoplastic tissues of mice as studied by paper chromatography. Cancer Res. 9645–648. (3 pl)1949.PubMed/NCBI | |
Roberts E and Borges PR: Patterns of free amino acids in growing and regressing tumor. Cancer Res. 15:697–699. 1955.PubMed/NCBI | |
Yuneva M, Zamboni N, Oefner P, Sachidanandam R and Lazebnik Y: Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 178:93–105. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wise DR, Deberardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, et al: Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 18:207–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin L, LI D, Alesi GN, Fan J, Kang HB, Lu Z, Boggon TJ, Jin P, Yi H, Wright ER, et al: Glutamate dehydrogenase1 signals through antioxidant glutathione peroxidase1 to regulate redox homeostasis and tumor growth. Cancer Cell. 27:257–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kung HN, Marks JR and Chi JT: Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 7:e10022292011. View Article : Google Scholar : PubMed/NCBI | |
Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, et al: Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 25:1234–1244. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guohua C, Stephanie L and Jian W: Glycine decarboxylase is a target for transcriptional repressor Snail. Cancer Metab. 2 Suppl 1:P832014. View Article : Google Scholar : | |
Lepage GA: In vitro incorporation of glycine-2-C14 into purines and proteins. Cancer Res. 13:178–185. 1953.PubMed/NCBI | |
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, et al: Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148:259–272. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen T: Biochemistry. 2nd. Beijing: Higher Education Press; pp. 270–273. 1991, PubMed/NCBI | |
Rose ML, Madren J, Bunzendahl H and Thurman RG: Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 20:793–798. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kalhan SC and Hanson RW: Resurgence of serine: An often neglected but indispensable amino acid. J Biol Chem. 287:19786–19791. 2012. View Article : Google Scholar : PubMed/NCBI | |
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et al: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 476:346–350. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pipkorn R, Wiessler M, Waldeck W, Hennrich U, Nokihara K, Beining M and Braun K: Improved synthesis strategy for peptide nucleic acids (PNA) appropriate for cell-specific fluorescence imaging. Int J Med Sci. 9:1–10. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Teo S, Lam DH, Jeyaseelan K and Wang S: MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 3:e3982012. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang Z, Zhu Y and Qin S: Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem. 14:280–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Yu C, Zhao D, Wu M and Yang Z: The mucin-type glycosylating enzyme polypeptide N-acetylgalactosaminyltransferase 14 promotes the migration of ovarian cancer by modifying mucin 13. Oncol Rep. 30:667–676. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu H, Huang YY, Pu LJ, Zhang XD, Jiang CC and Jiang ZW: Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase. Int J Mol Med. 31:1234–1242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin RZ, Wang TP, Hung RJ, Chuang YJ, Chien CC and Chang HY: Tumor-induced endothelial cell apoptosis: Roles of NAD(P)H oxidase-derived reactive oxygen species. J Cell Physiol. 226:1750–1762. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qian YR, Guo Y, Wan HY, Fan L, Feng Y, Ni L, Xiang Y and Li QY: Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial mesenchymal transition. Oncol Rep. 29:2408–2414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim EK, Park JM, Lim S, Choi JW, Kim HS, Seok H, Seo JK, Oh K, Lee DS, Kim KT, et al: Activation of AMP-activated protein kinase is essential for lysophosphatidic acid-induced cell migration in ovarian cancer cells. J Biol Chem. 286:24036–24045. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qiu SL, Xiao ZC, Piao CM, Xian YL, Jia LX, Qi YF, Han JH, Zhang YY and Du J: AMP-activated protein kinase α2 protects against liver injury from metastasized tumors via reduced glucose deprivation-induced oxidative stress. J Biol Chem. 289:9449–9459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Skubitz AP, Taras EP, Boylan KL, Waldron NN, Oh S, Panoskaltsis-Mortari A and Vallera DA: Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol. 130:579–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Liu Q, Xiao J and Du J: EpCAM-antibody-labeled noncytotoxic polymer vesicles for cancer stem cells-targeted delivery of anticancer drug and siRNA. Biomacromolecules. 16:1695–1705. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, et al: Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 526:131–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan Y, Qi Y, Liu D, Wu K, Wen F and Zhao S: Side population cells separated from A549 Lung cancer cell line possess cancer stem cell-like properties and inhibition of autophagy potentiates the cytotoxic. Oncol Rep. 34:929–935. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iacopino F, Angelucci C, Piacentini R, Biamonte F, Mangiola A, Maira G, Grassi C and Sica G: Isolation of cancer stem cells from three human glioblastoma cell lines: Characterization of two selected clones. PLoS One. 9:e1051662014. View Article : Google Scholar : PubMed/NCBI | |
Aguilar E, Marin de Mas I, Zodda E, Marin S, Morrish F, Selivanov V, Meca-Cortés Ó, Delowar H, Pons M, Izquierdo I, et al: Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program. Stem Cells. 34:1163–1176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Visvader JE and Lindeman GJ: Cancer stem cells in solid tumors: Accumulating evidence and unresolved questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oshimori N, Oristian D and Fuchs E: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 160:963–976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gammon L, Biddle A, Heywood HK, Johannessen AC and Mackenzie IC: Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One. 8:e624932013. View Article : Google Scholar : PubMed/NCBI | |
Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE and Mackenzie IC: Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71:5317–5326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biddle A, Gammon L, Liang X, Costea DE and Mackenzie IC: Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine. 4:138–145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al: Oncogenic kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 149:656–670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Jackstadt R, Siemens H, Li H, Kirchner T and Hermeking H: p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 74:532–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khew-Goodall Y and Goodall GJ: Myc-modulated miR-9 makes more metastases. Nat Cell Biol. 12:209–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Colvin H, Nishida N, Konno M, Haraguchi N, Takahashi H, Nishimura J, Hata T, Kawamoto K, Asai A, Tsunekuni K, et al: Oncometabolite D-2-hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer. Sci Rep. 8:362892016. View Article : Google Scholar | |
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A and Beach D: Glycolytic enzymes can modulate cellular life span. Cancer Res. 65:177–185. 2005.PubMed/NCBI | |
Hu J, Liu Z and Wang X: Does TP53 mutation promote ovarian cancer metastasis to omentum by regulating lipid metabolism? Med Hypotheses. 81:515–520. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, Späth D, Kayser S, Zucknick M, Götze K, et al: IDH1IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 28:3636–3643. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G and Chiaradonna F: Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 7:5232011. View Article : Google Scholar : PubMed/NCBI | |
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR and Chandel NS: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, et al: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25:460–470. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F and Hwang PM: p53 regulates mitochondrial respiration. Science. 312:1650–1653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA, Kim JW, Yustein JT, Lee LA and Dang CV: Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 25:6225–6234. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smith AP, Verrecchia A, Fagà G, Doni M, Perna D, Martinato F, Guccione E and Amati B: A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 28:422–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Jeon HM, Ju MK, Jeong EK, Kim CH, Park HG, Han SI and Kang HS: Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget. 7:7925–7939. 2016.PubMed/NCBI | |
Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW and Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-Myc. Proc Natl Acad Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Duan Q, Zhang Z, Li H, Wu H, Shen Q, Wang C and Yin T: Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. J Cell Mol Med. 21:2055–2067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guerra F, Guaragnella N, Arbini AA, Bucci C, Giannattasio S and Moro L: Mitochondrial dysfunction: A novel potential driver of epithelial-to-mesenchymal transition in cancer. Front Oncol. 7:2952017. View Article : Google Scholar : PubMed/NCBI | |
Murphy TA, Dang CV and Young JD: Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng. 15:206–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1IDH2 mutations in gliomas. N Engl J Med. 360:765–773. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, et al: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 17:225–234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E, et al: An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 340:626–630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grassian AR, Lin F, Barrett R, Liu Y, Jiang W, Korpal M, Astley H, Gitterman D, Henley T, Howes R, et al: Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT). J Biol Chem. 287:42180–42194. 2012. View Article : Google Scholar : PubMed/NCBI |