1
|
Li XJ, Ren ZJ, Tang JH and Yu Q: Exosomal
microRNA miR-1246 promotes cell proliferation, invasion and drug
resistance by targeting CCNG2 in breast cancer. Cell Physiol
Biochem. 44:1741–1748. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Benson JR and Jatoi I: The global breast
cancer burden. Future Oncol. 8:697–702. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
DeSantis C, Ma J, Bryan L and Jemal A:
Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Qiu N, He Y, Zhang S, Hu X, Chen M and Li
H: Cullin 7 is a predictor of poor prognosis in breast cancer
patients and is involved in the proliferation and invasion of
breast cancer cells by regulating the cell cycle and microtubule
stability. Oncol Rep. 39:603–610. 2018.PubMed/NCBI
|
5
|
Zhang X, Rice M, Tworoger SS, Rosner BA,
Eliassen AH, Tamimi RM, Joshi AD, Lindstrom S, Qian J, Colditz GA,
et al: Addition of a polygenic risk score, mammographic density,
and endogenous hormones to existing breast cancer risk prediction
models: A nested case-control study. PLoS Med. 15:e10026442018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hanafi-Bojd MY, Moosavian Kalat SA,
Taghdisi SM, Ansari L, Abnous K and Malaekeh-Nikouei B: MUC1
aptamer-conjugated mesoporous silica nanoparticles effectively
target breast cancer cells. Drug Dev Ind Pharm. 44:13–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Merikhian P, Ghadirian R, Farahmand L,
Mansouri S and Majidzadeh-AK: MUC1 induces tamoxifen resistance in
estrogen receptor-positive breast cancer. Expert Rev Anticancer
Ther. 17:607–613. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Goode G, Gunda V, Chaika NV, Purohit V, Yu
F and Singh PK: MUC1 facilitates metabolomic reprogramming in
triple-negative breast cancer. PLoS One. 12:e01768202017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou D, Xu L, Huang W and Tonn T: Epitopes
of MUC1 tandem repeats in cancer as revealed by antibody
crystallography: Toward glycopeptide signature-guided therapy.
Molecules. 23(pii): E13262018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Patriarca C, Colombo P, Pio Taronna A,
Wesseling J, Franchi G, Guddo F, Naspro R, Macchi RM, Giunta P, Di
Pasquale M, et al: Cell discohesion and multifocality of carcinoma
in situ of the bladder: New insight from the adhesion molecule
profile (e-cadherin, Ep-CAM, and MUC1). Int J Surg Pathol.
17:99–106. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wesseling J, van der Valk SW, Vos HL,
Sonnenberg A and Hilkens J: Episialin (MUC1) overexpression
inhibits integrin-mediated cell adhesion to extracellular matrix
components. J Cell Biol. 129:255–265. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Suwa T, Hinoda Y, Makiguchi Y, Takahashi
T, Itoh F, Adachi M, Hareyama M and Imai K: Increased invasiveness
of MUC1 and cDNA-transfected human gastric cancer MKN74 cells. Int
J Cancer. 76:377–382. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bernier AJ, Zhang J, Lillehoj E, Shaw AR,
Gunasekara N and Hugh JC: Non-cysteine linked MUC1 cytoplasmic
dimers are required for Src recruitment and ICAM-1 binding induced
cell invasion. Mol Cancer. 10:932011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mansouri N, Movafagh A, Soleimani S,
Taheri M, Hashemi M, Heidary Pour A, Alizadeh Shargh S,
Mosavi-Jarahi A, Sasaninejad Z, Zham H, et al: Overexpression of
the MUC1 gene in iranian women with breast cancer micrometastasis.
Asian Pac J Cancer Prev. 17:275–278. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pillai K, Pourgholami MH, Chua TC and
Morris DL: MUC1 as a potential target in anticancer therapies. Am J
Clin Oncol. 38:108–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Apostolopoulos V, Stojanovska L and
Gargosky SE: MUC1 (CD227): A multi-tasked molecule. Cell Mol Life
Sci. 72:4475–4500. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Toruner GA, Ulger C, Alkan M, Galante AT,
Rinaggio J, Wilk R, Tian B, Soteropoulos P, Hameed MR, Schwalb MN,
et al: Association between gene expression profile and tumor
invasion in oral squamous cell carcinoma. Cancer Genet Cytogenet.
154:27–35. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Viala M, Alexandre M, Thezenas S, Lamy PJ,
Maran-Gonzalez A, Gutowski M, Colombo PE, Romieu G, Jacot W and
Guiu S: Prognostic impact of the inclusion of uPA/PAI-1 for
adjuvant treatment decision-making in ER+/Her2-pN0 early breast
cancers. Breast Cancer Res Treat. 165:611–621. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang X, Lv QL, Huang YT, Zhang LH and
Zhou HH: Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2
promotes progression of human glioma. J Exp Clin Cancer Res.
36:1052017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ma X, Shang F, Zhu W and Lin Q:
CXCR4 expression varies significantly among different
subtypes of glioblastoma multiforme (GBM) and its low expression or
hypermethylation might predict favorable overall survival. Expert
Rev Neurother. 17:941–946. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu J, Li T and Liu XL: DDA1 is induced by
NR2F6 in ovarian cancer and predicts poor survival outcome. Eur Rev
Med Pharmacol Sci. 21:1206–1213. 2017.PubMed/NCBI
|
22
|
Qu LP, Zhong YM, Zheng Z and Zhao RX:
CDH17 is a downstream effector of HOXA13 in modulating the
Wnt/beta-catenin signaling pathway in gastric cancer. Eur Rev Med
Pharmacol Sci. 21:1234–1241. 2017.PubMed/NCBI
|
23
|
Daniel JW, David VDB, Fei P, Berman BP and
Laird PW: Comprehensive DNA methylation analysis on the
Illumina® infinium® assay platform. Illumina.
2008.
|
24
|
Forbes SA, Beare D, Boutselakis H, Bamford
S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al:
COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids
Res. 45:D777–D783. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Forbes SA, Beare D, Bindal N, Bamford S,
Ward S, Cole CG, Jia M, Kok C, Boutselakis H, De T, et al: COSMIC:
High-resolution cancer genetics using the catalogue of somatic
mutations in cancer. Curr Protoc Hum Genet. 91:10.11.1–10.11.37.
2016. View
Article : Google Scholar
|
26
|
Jezequel P, Campone M, Gouraud W,
Guérin-Charbonnel C, Leux C, Ricolleau G and Campion L:
bc-GenExMiner: An easy-to-use online platform for gene prognostic
analyses in breast cancer. Breast Cancer Res Treat. 131:765–775.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jezequel P, Frenel JS, Campion L,
Guérin-Charbonnel C, Gouraud W, Ricolleau G and Campone M:
bc-GenExMiner 3.0: New mining module computes breast cancer gene
expression correlation analyses. Database. 2013:bas0602013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zang C, Wang T, Deng K, Li B, Hu S, Qin Q,
Xiao T, Zhang S, Meyer CA, He HH, et al: High-dimensional genomic
data bias correction and data integration using MANCIE. Nat Commun.
7:113052016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Eirew P, Steif A, Khattra J, Ha G, Yap D,
Farahani H, Gelmon K, Chia S, Mar C, Wan A, et al: Dynamics of
genomic clones in breast cancer patient xenografts at single-cell
resolution. Nature. 518:422–426. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ciriello G, Gatza ML, Beck AH, Wilkerson
MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, et
al: Comprehensive molecular portraits of invasive lobular breast
cancer. Cell. 163:506–519. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shlien A, Raine K, Fuligni F, Arnold R,
Nik-Zainal S, Dronov S, Mamanova L, Rosic A, Ju YS, Cooke SL, et
al: Direct transcriptional consequences of somatic mutation in
breast cancer. Cell Rep. 16:2032–2046. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Martelotto LG, De Filippo MR, Ng CK,
Natrajan R, Fuhrmann L, Cyrta J, Piscuoglio S, Wen HC, Lim RS, Shen
R, et al: Genomic landscape of adenoid cystic carcinoma of the
breast. J Pathol. 237:179–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shah SP, Roth A, Goya R, Oloumi A, Ha G,
Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal
and mutational evolution spectrum of primary triple-negative breast
cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Banerji S, Cibulskis K, Rangel-Escareno C,
Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY,
Sougnez C, Zou L, et al: Sequence analysis of mutations and
translocations across breast cancer subtypes. Nature. 486:405–409.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Stephens PJ, Tarpey PS, Davies H, Van Loo
P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell
GR, et al: The landscape of cancer genes and mutational processes
in breast cancer. Nature. 486:400–404. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
The Metastatic Breast Cancer Project.
https://www.mbcproject.org/June
10–2018Provisional April, 2018.
|
39
|
Mizuno H, Kitada K, Nakai K and Sarai A:
PrognoScan: A new database for meta-analysis of the prognostic
value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Karaayvaz M, Cristea S, Gillespie SM,
Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F
and Ellisen LW: Unravelling subclonal heterogeneity and aggressive
disease states in TNBC through single-cell RNA-seq. Nat Commun.
9:35882018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Dabakuyo TS, Bonnetain F, Roignot P,
Poillot ML, Chaplain G, Altwegg T, Hedelin G and Arveux P:
Population-based study of breast cancer survival in Cote d'Or
(France): Prognostic factors and relative survival. Ann Oncol.
19:276–283. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Mitchell P, Thatcher N, Socinski MA,
Wasilewska-Tesluk E, Horwood K, Szczesna A, Martín C, Ragulin Y,
Zukin M, Helwig C, et al: Tecemotide in unresectable stage III
non-small-cell lung cancer in the phase III START study: Updated
overall survival and biomarker analyses. Ann Oncol. 26:1134–1142.
2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim TH, Park JM, Kim MY and Ahn YH: The
role of CREB3L4 in the proliferation of prostate cancer cells. Sci
Rep. 7:453002017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Inagaki Y, Yasui K, Endo M, Nakajima T,
Zen K, Tsuji K, Minami M, Tanaka S, Taniwaki M, Itoh Y, et al:
CREB3L4INTS3, and SNAPAP are targets for the 1q21
amplicon frequently detected in hepatocellular carcinoma. Cancer
Genet Cytogenet. 180:30–36. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Qi H, Fillion C, Labrie Y, Grenier J,
Fournier A, Berger L, El-Alfy M and Labrie C: AIbZIP, a novel bZIP
gene located on chromosome 1q21.3 that is highly expressed in
prostate tumors and of which the expression is up-regulated by
androgens in LNCaP human prostate cancer cells. Cancer Res.
62:721–733. 2002.PubMed/NCBI
|
46
|
Wesseling J, van der Valk SW and Hilkens
J: A mechanism for inhibition of E-cadherin-mediated cell-cell
adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol
Cell. 7:565–577. 1996. View Article : Google Scholar : PubMed/NCBI
|
47
|
Huang X, Sun Q, Chen C, Zhang Y, Kang X,
Zhang JY, Ma DW, Xia L, Xu L, Xu XY and Ren BH: MUC1 overexpression
predicts worse survival in patients with non-small cell lung
cancer: Evidence from an updated meta-analysis. Oncotarget.
8:90315–90326. 2017.PubMed/NCBI
|
48
|
Xue M and Tao W: Upregulation of MUC1 by
its novel activator 14-3-3ζ promotes tumor invasion and indicates
poor prognosis in lung adenocarcinoma. Oncol Rep. 38:2637–2646.
2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Betge J, Schneider NI, Harbaum L,
Pollheimer MJ, Lindtner RA, Kornprat P, Ebert MP and Langner C:
MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression
profiles and clinical significance. Virchows Arch. 469:255–265.
2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Al-Khayal K, Abdulla M, Al-Obaid O,
Zubaidi A, Vaali-Mohammed MA, Alsheikh A and Ahmad R: Differential
expression of mucins in Middle Eastern patients with colorectal
cancer. Oncol Lett. 12:393–400. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang XT, Kong FB, Mai W, Li L and Pang LM:
MUC1 Immunohistochemical expression as a prognostic factor in
gastric cancer: Meta-analysis. Dis Markers. 2016:94215712016.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Genitsch V, Zlobec I, Thalmann GN and
Fleischmann A: MUC1 is upregulated in advanced prostate cancer and
is an independent prognostic factor. Prostate Cancer Prostatic Dis.
19:242–247. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Dai D, Chen B, Tang H, Wang B, Zhao Z, Xie
X and Wei W: Nomograms for predicting the prognostic value of
pre-therapeutic CA15-3 and CEA serum levels in TNBC patients. PLoS
One. 11:e01619022016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Darlix A, Lamy PJ, Lopez-Crapez E,
Braccini AL, Firmin N, Romieu G, Thezenas S and Jacot W: Serum HER2
extra-cellular domain, S100β and CA 15-3 levels are independent
prognostic factors in metastatic breast cancer patients. BMC
Cancer. 16:4282016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Roy LD, Sahraei M, Subramani DB, Besmer D,
Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SI, et al:
MUC1 enhances invasiveness of pancreatic cancer cells by inducing
epithelial to mesenchymal transition. Oncogene. 30:1449–1459. 2011.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Velpula KK, Rehman AA, Chigurupati S,
Sanam R, Inampudi KK and Akila CS: Computational analysis of human
and mouse CREB3L4 protein. Bioinformation. 8:574–577. 2012.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Iguchi H, Mitsui T, Ishida M, Kanba S and
Arita J: cAMP response element-binding protein (CREB) is required
for epidermal growth factor (EGF)-induced cell proliferation and
serum response element activation in neural stem cells isolated
from the forebrain subventricular zone of adult mice. Endocr J.
58:747–759. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Lee YW, Park HJ, Son KW, Hennig B,
Robertson LW and Toborek M: 2,2′,4,6,6′-pentachlorobiphenyl (PCB
104) induces apoptosis of human microvascular endothelial cells
through the caspase-dependent activation of CREB. Toxicol Appl
Pharmacol. 189:1–10. 2003. View Article : Google Scholar : PubMed/NCBI
|
59
|
Velmurugan K, Balamurugan AN, Loganathan
G, Ahmad A, Hering BJ and Pugazhenthi S: Antiapoptotic actions of
exendin-4 against hypoxia and cytokines are augmented by CREB.
Endocrinology. 153:1116–1128. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kim TH, Park JM, Jo SH, Kim MY, Nojima H
and Ahn YH: Effects of low-fat diet and aging on metabolic profiles
of Creb3l4 knockout mice. Nutr Diabetes. 5:e1792015.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Choi J, Djebbar S, Fournier A and Labrie
C: The co-chaperone DNAJC12 binds to Hsc70 and is upregulated by
endoplasmic reticulum stress. Cell Stress Chaperones. 19:439–446.
2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Labrie C, Lessard J, Ben Aicha S, Savard
MP, Pelletier M, Fournier A, Lavergne E and Calvo E:
Androgen-regulated transcription factor AIbZIP in prostate cancer.
J Steroid Biochem Mol Biol. 108:237–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
63
|
The Cancer Genome Atlas. https://tcga-data.nci.nih.gov/tcga/June
10–2018
|