Ubiquitination‑deubiquitination in the Hippo signaling pathway (Review)
- Authors:
- Yanting Liu
- Jun Deng
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: January 8, 2019 https://doi.org/10.3892/or.2019.6956
- Pages: 1455-1475
This article is mentioned in:
Abstract
Udan RS, Kangosingh M, Nolo R, Tao C and Halder G: Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 5:914–920. 2003. View Article : Google Scholar : PubMed/NCBI | |
Varelas X: The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 141:1614–1626. 2014. View Article : Google Scholar : PubMed/NCBI | |
Halder G and Johnson RL: Hippo signaling: Growth control and beyond. Development. 138:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu FX and Guan KL: The Hippo pathway: Regulators and regulations. Genes Dev. 27:355–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu FX, Zhao B and Guan KL: Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wierzbicki PM and Rybarczyk A: The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol. 53:105–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi P, Feng J and Chen C: Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shanghai). 47:53–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ding W, Chen C, Niu Z, Pan M and Zhang H: Roles of Hippo signaling in lung cancer. Indian J Cancer. 52 Suppl 1:e1–e5. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wang M, Xu S, Guo X and Jiang J: Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 6:44466–44479. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014.PubMed/NCBI | |
Herrmann J, Lerman LO and Lerman A: Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 100:1276–1291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hanpude P, Bhattacharya S, Dey AK and Maiti TK: Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life. 67:544–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson KD: Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 11:141–148. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hong W and Guan KL: The YAP and TAZ transcription co-activators: Key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 23:785–793. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hansen CG, Moroishi T and Guan KL: YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol. 25:499–513. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI | |
Strano S, Monti O, Baccarini A, Sudol M, Sacchi A, Oren M, Sudol M, Cesareni G and Blandino G: Physical interaction with yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 37:15164–15173. 2001. View Article : Google Scholar | |
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, et al: Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Sakuma R, Samavarchitehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A and Mauviel A: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 21:4879–4884. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kelleher FC and O'Sullivan H: FOXM1 in sarcoma: Role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget. 7:42792–42804. 2016. View Article : Google Scholar : PubMed/NCBI | |
Murakami M, Nakagawa M, Olson EN and Nakagawa O: A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA. 102:18034–18039. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, et al: β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 151:1457–1473. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yagi R, Chen LF, Shigesada K, Murakami Y and Ito Y: A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18:2551–2562. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, et al: VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 24:331–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Lei QY and Guan KL: The Hippo-YAP pathway: New connections between regulation of organ size and cancer. Curr Opin Cell Biol. 20:638–646. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ahn EY, Kim JS, Kim GJ and Park YN: RASSF1A-mediated regulation of AREG via the Hippo pathway in hepatocellular carcinoma. Mol Cancer Res. 11:748–758. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma K, Xu Q, Wang S, Zhang W, Liu M, Liang S, Zhu H and Xu N: Nuclear accumulation of Yes-Associated Protein (YAP) maintains the survival of doxorubicin-induced senescent cells by promoting survivin expression. Cancer Lett. 375:84–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Staley BK and Irvine KD: Hippo signaling in Drosophila: Recent advances and insights. Dev Dyn. 241:3–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boggiano JC, Vanderzalm PJ and Fehon RG: Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell. 21:888–895. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang HL, Wang S, Yin MX, Dong L, Wang C, Wu W, Lu Y, Feng M, Dai C, Guo X, et al: Par-1 regulates tissue growth by influencing Hippo phosphorylation status and Hippo-salvador association. PLoS Biol. 11:e10016202013. View Article : Google Scholar : PubMed/NCBI | |
Genevet A, Wehr MC, Brain R, Thompson BJ and Tapon N: Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell. 18:300–308. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Moroishi T, Mottierpavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, et al: MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 6:83572015. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Yu J, Zheng Y, Chen Q, Zhang N and Pan D: Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 154:1342–1355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, et al: Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol. 23:1181–1194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huntoon CJ, Nye MD, Geng L, Peterson KL, Flatten KS, Haluska P, Kaufmann SH and Karnitz LM: Heat shock protein 90 inhibition depletes LATS1 and LATS2, two regulators of the mammalian hippo tumor suppressor pathway. Cancer Res. 70:8642–8650. 2010. View Article : Google Scholar : PubMed/NCBI | |
Das Thakur M, Feng Y, Jagannathan R, Seppa MJ, Skeath JB and Longmore GD: Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol. 20:657–662. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF and Hong W: WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene. 30:600–610. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH and Zhang J: PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene. 32:1266–1273. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LSB, Abujarour R, et al: The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24:1106–1118. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R and Brummelkamp TR: YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 17:2054–2060. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, Mcanally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, et al: Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA. 110:13839–13844. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR and Camargo FD: Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 144:782–795. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL and Martin JF: Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 332:458–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Pasolli HA and Fuchs E: Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA. 108:2270–2275. 2011. View Article : Google Scholar : PubMed/NCBI | |
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD and Pu WT: YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 109:2394–2399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harvey KF, Pfleger CM and Hariharan IK: The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 114:457–467. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Zhang W, Wang B, Trinko R and Jiang J: The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17:2514–2519. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS and Johnson RL: Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA. 107:1437–1442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xin M, Kim Y, Sutherland LB, Qi X, Mcanally J, Schwartz RJ, Richardson JA, Basselduby R and Olson EN: Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 4:ra702011. View Article : Google Scholar : PubMed/NCBI | |
Johnson R and Halder G: The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 13:63–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J and Bardeesy N: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 16:425–438. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Le ES, Jahchan N, Ji X, Xu A and Luo K: SnoN antagonizes the Hippo kinase complex to promote TAZ signaling during breast carcinogenesis. Dev Cell. 37:399–412. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jing Z, Wang G, Chu SJ, Zhu JS, Rui Z, Lu WW, Xia LQ, Lu YM, Wei D and Sun Q: Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling. Oncotarget. 7:16180–16193. 2016.PubMed/NCBI | |
Strazisar M, Mlakar V and Glavac D: LATS2 tumour specific mutations and down-regulation of the gene in non-small cell carcinoma. Lung Cancer. 64:257–262. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ishizaki K, Fujimoto J, Kumimoto H, Nishimoto Y, Shimada Y, Shinoda M and Yamamoto T: Frequent polymorphic changes but rare tumor specific mutations of the LATS2 gene on 13q11-12 in esophageal squamous cell carcinoma. Int J Oncol. 21:1053–1057. 2002.PubMed/NCBI | |
Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, Mckee T, Letourneau A, et al: Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 48:398–406. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Kavanagh JJ, Wildrick DM, Wharton JT and Blick M: Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in human ovarian carcinomas. Cancer Res. 50:2724–2728. 1990.PubMed/NCBI | |
Theile M, Seitz S, Arnold W, Jandrig B, Frege R, Schlag PM, Haensch W, Guski H, Winzer KJ, Barrett JC and Scherneck S: A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer. Oncogene. 13:677–685. 1996.PubMed/NCBI | |
Noviello C, Courjal F and Theillet C: Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: Possibly four regions of deletion. Clin Cancer Res. 2:1601–1606. 1996.PubMed/NCBI | |
Chen KH, He J, Wang DL, Cao JJ, Li MC, Zhao XM, Sheng X, Li WB and Liu WJ: Methylation-associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. Int J Oncol. 45:2511–2521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M and Wilson SA: FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development. 138:1893–1902. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Zhu YT, Hu L and Zhu YJ: Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer. 124:793–798. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zang ZJ, Cutcutache I, Poon SL, Zhang SL, Mcpherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al: Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 44:570–574. 2012. View Article : Google Scholar : PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mitamura T, Watari H, Wang L, Kanno H, Miyazaki M, Kitagawa M, Hassan MK, Dong P, Kimura T, Tanino M and Sakuragi N: MicroRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway. Mol Cancer. 13:972014. View Article : Google Scholar : PubMed/NCBI | |
Tan G, Cao X, Dai Q, Zhang B, Huang J, Xiong S, Zhang Y, Chen W, Yang J and Li H: A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget. 6:8676–8686. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen S, Guo X, Yan H, Lu Y, Ji X, Li L, Liang T, Zhou D, Feng XH, Zhao JC, et al: A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res. 25:997–1012. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Wang Y, Mijiti M, Wang Z, Wu PF and Jiafu D: Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the Hippo signaling pathway. Biochem Biophys Res Commun. 465:194–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riquelme I, Ili C, Roa JC and Brebi P: Long non-coding RNAs in gastric cancer: Mechanisms and potential applications. Oncotarget. 2016.doi: 10.18632/oncotarget.9396. | |
Gutschner T and Diederichs S: The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wei G, Xia H, Yu H, Tang Q and Bi F: Down regulation of lincRNA-p21 contributes to gastric cancer development through Hippo-independent activation of YAP. Oncotarget. 8:63813–63824. 2017.PubMed/NCBI | |
Qu S, Yue Z, Shang R, Xuan Z, Song W, Kjems J and Li H: The emerging landscape of circular RNA in life processes. RNA Biol. 14:992–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI | |
He M, Zhou Z, Shah AA, Yang H, Chen Q and Wan Y: New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div. 11:42016. View Article : Google Scholar : PubMed/NCBI | |
Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A and Basu S: JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 1:e292010. View Article : Google Scholar : PubMed/NCBI | |
Jang SW, Yang SJ, Srinivasan S and Ye K: Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem. 282:30836–30844. 2007. View Article : Google Scholar : PubMed/NCBI | |
Collak FK, Yagiz K, Luthringer DJ, Erkaya B and Cinar B: Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1. J Biol Chem. 287:23698–23709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bi W, Xiao L, Jia Y, Wu J, Xie Q, Ren J, Ji G and Yuan Z: c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82. J Biol Chem. 285:6259–6264. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hata S, Hirayama J, Kajiho H, Nakagawa K, Hata Y, Katada T, Furutaniseiki M and Nishina H: A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem. 287:22089–22098. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, Meng S, Wang Y, Yuan Z and Bi W: SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene. 33:1468–1474. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, et al: Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell. 26:188–194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kreppel LK, Blomberg MA and Hart GW: Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 272:9308–9315. 1997. View Article : Google Scholar : PubMed/NCBI | |
Singh JP, Zhang K, Wu J and Yang X: O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 356:244–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Starska K, Forma E, Brzezińska-Błaszczyk E, Lewy-Trenda I, Bryś M, Jóźwiak P and Krześlak A: Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer. Clin Exp Med. 15:455–468. 2015. View Article : Google Scholar : PubMed/NCBI | |
Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T and Mills IG: O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73:5277–5287. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, et al: The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 8:152802017. View Article : Google Scholar : PubMed/NCBI | |
Jennissen HP: Ubiquitin and the enigma of intracellular protein degradation. Eur J Biochem. 231:1–30. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hicke L: Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2:195–201. 2001. View Article : Google Scholar : PubMed/NCBI | |
Berndsen CE and Wolberger C: New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 21:301–307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI | |
Thrower JS, Hoffman L, Rechsteiner M and Pickart CM: Recognition of the polyubiquitin proteolytic signal. EMBO J. 19:94–102. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yang J, Han L, Zhao K, Wu Q, Bao L, Li Z, Lv L and Li B: TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORγt in promoting IL-17A expression. J Biol Chem. 290:29086–29094. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang WL, Wu CY, Wu J and Lin HK: Regulation of Akt signaling activation by ubiquitination. Cell Cycle. 9:487–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay D and Riezman H: Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 315:201–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Terrell J, Shih S, Dunn R and Hicke L: A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell. 1:193–202. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rome S, Meugnier E and Vidal H: The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Curr Opin Clin Nutr Metab Care. 7:249–254. 2004. View Article : Google Scholar : PubMed/NCBI | |
Izzi L and Attisano L: Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 23:2071–2078. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lan Q, Gao Y, Li Y, Hong X and Xu P: Progress in ubiquitin, ubiquitin chain and protein ubiquitination. Sheng Wu Gong Cheng Xue Bao. 32:14–30. 2016.(In Chinese). PubMed/NCBI | |
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q and Wan Y: The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6:622016. View Article : Google Scholar : PubMed/NCBI | |
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Huang W, Kanasaki K and Xu Y: The role of ubiquitination and sumoylation in diabetic nephropathy. Biomed Res Int 2014. 1606922014. | |
Chen Z and Lu W: Roles of ubiquitination and SUMOylation on prostate cancer: Mechanisms and clinical implications. Int J Mol Sci. 16:4560–4580. 2015. View Article : Google Scholar : PubMed/NCBI | |
Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Huang HC and Jiang ZF: Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res. 36:276–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
Debald M, Schildberg FA, Linke A, Walgenbach K, Kuhn W, Hartmann G and Walgenbach-Brünagel G: Specific expression of k63-linked ubiquitination of calmodulin-like protein 5 in breast cancer of premenopausal patients. J Cancer Res Clin Oncol. 139:2125–2132. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zarrizi R, Menard JA, Belting M and Massoumi R: Deubiquitination of gamma-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 74:6499–6508. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Stevens PD, Yang H, Gulhati P, Wang W, Evers BM and Gao T: The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene. 32:471–478. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya S and Ghosh MK: Cell death and deubiquitinases: Perspectives in cancer. Biomed Res Int 2014. 4351972014. | |
Burger AM and Seth AK: The ubiquitin-mediated protein degradation pathway in cancer: Therapeutic implications. Eur J Cancer. 40:2217–2229. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Zhang Y and Galardy PJ: DUBs and cancer: The role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. 8:1688–1697. 2009. View Article : Google Scholar : PubMed/NCBI | |
Surget S, Khoury MP and Bourdon JC: Uncovering the role of p53 splice variants in human malignancy: A clinical perspective. Oncotargets Ther. 7:57–68. 2013. | |
Canner JA, Sobo M, Ball S, Hutzen B, Deangelis S, Willis W, Studebaker AW, Ding K, Wang S, Yang D and Lin J: MI-63: A novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br J Cancer. 101:774–781. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Franklin DA, Dong J and Zhang Y: MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 74:7161–7167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brooks CL, Li M, Hu M, Shi Y and Gu W: The p53-Mdm2-HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene. 26:7262–7266. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hock AK, Vigneron AM, Carter S, Ludwig RL and Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 30:4921–4930. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-κB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI | |
Häcker H and Karin M: Regulation and function of IKK and IKK-related Kinases. Sci STKE 2006. re132006. | |
Fuchs S: Activation of β-Trcp ubiquitin ligases in cancers: Mechanisms and outcomes. Cancer Res. 67:2007. | |
Schweitzer K, Bozko PM, Dubiel W and Naumann M: CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26:1532–1541. 2007. View Article : Google Scholar : PubMed/NCBI | |
Harhaj EW and Dixit VM: Regulation of NF-κB by deubiquitinases. Immunol Rev. 246:107–124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luise C, Capra M, Donzelli M, Mazzarol G, Jodice MG, Nuciforo P, Viale G, Di Fiore PP and Confalonieri S: An atlas of altered expression of deubiquitinating enzymes in human cancer. PLoS One. 6:e158912011. View Article : Google Scholar : PubMed/NCBI | |
Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, et al: The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 66:8625–8632. 2006. View Article : Google Scholar : PubMed/NCBI | |
Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W and Boutros M: An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 129:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hilman D and Gat U: The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol. 28:2403–2417. 2011. View Article : Google Scholar : PubMed/NCBI | |
Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F and Barrufet LR: Protein kinases of the Hippo pathway: Regulation and substrates. Semin Cell Dev Biol. 23:770–784. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y and Nojima H: Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics. 63:263–270. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama Y and Al E: A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett. 459:159–165. 1999. View Article : Google Scholar : PubMed/NCBI | |
Visser S and Yang X: LATS tumor suppressor: A new governor of cellular homeostasis. Cell Cycle. 9:3892–3903. 2010. View Article : Google Scholar : PubMed/NCBI | |
Furth N and Aylon Y: The LATS1 and LATS2 tumor suppressors: Beyond the Hippo pathway. Cell Death Differ. 24:1488–1501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li X, Huang J, Feng L, Dolinta KG and Chen J: Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics. 13:119–131. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lit LC, Scott S, Zhang H, Stebbing J, Photiou A and Giamas G: LATS2 is a modulator of estrogen receptor alpha. Anticancer Res. 33:53–63. 2013.PubMed/NCBI | |
Powzaniuk M, Mcelwee-Witmer S, Vogel RL, Hayami T, Rutledge SJ, Chen F, Harada S, Schmidt A, Rodan GA, Freedman LP and Bai C: The LATS2/KPM tumor suppressor is a negative regulator of the androgen receptor. Mol Endocrinol. 18:2011–2023. 2004. View Article : Google Scholar : PubMed/NCBI | |
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z, et al: The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 541:541–545. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, Carson DA and Guan KL: The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell. 167:1525–1539.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–79. 1998. View Article : Google Scholar : PubMed/NCBI | |
Boase NA and Kumar S: NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene. 557:113–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bernassola F, Karin M, Ciechanover A, Melino and Gerry: The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell. 14:10–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang B and Kumar S: Nedd4 and Nedd4-2: Closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 17:68–77. 2010. View Article : Google Scholar : PubMed/NCBI | |
Salah Z, Melino G and Aqeilan RI: Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res. 71:2010–2020. 2011. View Article : Google Scholar : PubMed/NCBI | |
Salah Z, Itzhaki E and Aqeilan RI: The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway. Oncotarget. 5:10886–10900. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yeung B, Ho KC and Yang X: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS One. 8:e610272013. View Article : Google Scholar : PubMed/NCBI | |
Bae SJ, Kim M, Kim SH, Kwon YE, Lee JH, Kim J, Chung CH, Lee WJ and Seol JH: NEDD4 controls intestinal stem cell homeostasis by regulating the Hippo signalling pathway. Nat Commun. 6:63142015. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Huang J, Dong J and Pan D: Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nakayama K, Qi J and Ronai Z: The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res. 7:443–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, Gao R, Zhou C, Cao L, Liu J, et al: Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 17:95–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, Snuderl M, Ladanyi M, Hanemann CO, Zhou P, et al: Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DcAF1)-mediated inhibition of the hippo pathway kinases Latsl and 2 in the nucleus. Cancer Cell. 26:48–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Zhou P: DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 26:775–780. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Kim W, Song Y, Kim JR, Cho K, Moon H, Ro SW, Seo E, Ryu YM, Myung SJ and Jho EH: Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci USA. 114:4691–4696. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim Y and Jho EH: Deubiquitinase YOD1: The potent activator of YAP in hepatomegaly and liver cancer. BMB Rep. 50:281–282. 2017. View Article : Google Scholar : PubMed/NCBI | |
Toloczko A, Guo F, Yuen HF, Wen Q, Wood SA, Ong YS, Chan PY, Alli SA, Gunaratne J, Dunne MJ, et al: Deubiquitinating enzyme USP9X suppresses tumor growth via LATS kinase and core components of the hippo pathway. Cancer Res. 77:4921–4933. 2017.PubMed/NCBI | |
Thanh Nguyen H, Andrejeva D, Gupta R, Choudhary C, Hong X, Eichhorn PJ, Loya AC and Cohen SM: Deubiquitylating enzyme USP9× regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discov. 2:160012016. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Gondo Y, Goto J, Kanazawa I, Hadano S and Ikeda JE: Unstable transmission of the RS447 human megasatellite tandem repetitive sequence that contains the USP17 deubiquitinating enzyme gene. Hum Genet. 110:302–313. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HT, Kugler JM and Cohen SM: DUB3 deubiquitylating enzymes regulate hippo pathway activity by regulating the stability of ITCH, LATS and AMOT proteins. PLoS One. 12:e01695872017. View Article : Google Scholar : PubMed/NCBI | |
Salah Z, Alian A and Aqeilan RI: WW domain-containing proteins: Retrospectives and the future. Front Biosci (Landmark Ed). 17:331–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC and Yaffe MB: TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ye F and Zhang M: Structures and target recognition modes of PDZ domains: Recurring themes and emerging pictures. Biochem J. 455:1–14. 2013. View Article : Google Scholar : PubMed/NCBI | |
Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M and Gettemans J: TAZ interacts with zonula occludens-1 and −2 proteins in a PDZ-1 dependent manner. FEBS Lett. 584:4175–4180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jang EJ, Jeong H, Han KH, Kwon HM, Hong JH and Hwang ES: TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Cell Biol. 32:4925–4932. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H, Guan KL and Xu Y: Structural insights into the YAP and TEAD complex. Genes Dev. 24:235–240. 2010. View Article : Google Scholar : PubMed/NCBI | |
Howell M, Borchers C and Milgram SL: Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription. J Biol Chem. 279:26300–26306. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sudol M: Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 9:2145–2152. 1994.PubMed/NCBI | |
Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al: The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 147:759–772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, Zhong Y, Wu CJ, Sadanandam A, Hu B, et al: Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 158:185–197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Attisano L and Wrana JL: Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime Rep. 5:172013. View Article : Google Scholar : PubMed/NCBI | |
Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri A, et al: Rescue of Hippo co-activator yap1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 20:599–606. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L, Tumaneng K, Wang CY and Guan KL: A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24:72–85. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, et al: The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 285:37159–37169. 2010. View Article : Google Scholar : PubMed/NCBI | |
Deshaies RJ: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 15:435–467. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J and Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a Novel motif, the F-Box. Cell. 86:263–274. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hart M, Concordet J, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R and Polakis P: The F-box protein β-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 9:207–210. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fuchs SY, Spiegelman VS and Kumar KG: The many faces of beta-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene. 23:2028–2036. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J and Benjamin T: TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol. 27:6383–6395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yim H, Sung CK, You J, Tian Y and Benjamin T: Nek1 and TAZ interact to maintain normal levels of polycystin 2. J Am Soc Nephrol. 22:832–837. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, Xiong Y, Lei QY and Guan KL: The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFβ-TrCP-dependent degradation in response to phosphatidylinositol 3-Kinase inhibition. J Biol Chem. 287:26245–26253. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao JJ and Roberts TM: PI3 kinases in cancer: From oncogene artifact to leading cancer target. Sci STKE 2006. pe522006. | |
Wang Z, Inuzuka H, Zhong J, Wan L, Fukushima H, Sarkar FH and Wei W: Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett. 586:1409–1418. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, Yao Y and Liu Q: Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI | |
Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM and Cohen SM: Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 33:2447–2457. 2015. View Article : Google Scholar | |
Linossi EM and Nicholson SE: The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life. 64:316–323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reddy BV and Irvine K: Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell. 24:459–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu T, Li Y, Wu C, Luo K, Yin Y, Chen Y, Nowsheen S, Wu J, Lou Z and Yuan J: The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization. Oncogene. 37:2422–2431. 2018. View Article : Google Scholar : PubMed/NCBI | |
Troyanovsky B, Levchenko T, Månsson G, Matvijenko O and Holmgren L: Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 152:1247–1254. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG and Holmgren L: Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 298:69–77. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmäki N, Bratt A, Dutta A and Holmgren L: p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J. 273:2000–2011. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zetter BR: Hold that line. Angiomotin regulates endothelial cell motility. J Cell Biol. 152:F35–F36. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q and Guan KL: Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C and Hong W: Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 286:7018–7026. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mana-Capelli S, Paramasivam M, Dutta S and Mccollum D: Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 25:1676–1685. 2014. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paramasivam M, Sarkeshik A, Yates JR III, Fernandes MJ and Mccollum D: Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell. 22:3725–3733. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan SW, Lim CJ, Guo F, Tan I, Leung T and Hong W: Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem. 288:37296–37307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC, Liu Q, Shimono A, Sudol M, Holmgren L, et al: The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal. 6:ra772013. View Article : Google Scholar : PubMed/NCBI | |
Wang C, An J, Zhang P, Xu C, Gao K, Wu D, Wang D, Yu H, Liu JO and Yu L: The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. Biochem J. 444:279–289. 2012. View Article : Google Scholar : PubMed/NCBI | |
Adler JJ, Heller BL, Bringman LR, Ranahan WP, Cocklin RR, Goebl MG, Oh M, Lim HS, Ingham RJ and Wells CD: Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. J Biol Chem. 288:15181–15193. 2013. View Article : Google Scholar : PubMed/NCBI | |
Skouloudaki K and Walz G: YAP1 recruits c-Abl to protect angiomotin-like 1 from Nedd4-mediated degradation. PLoS One. 7:e357352012. View Article : Google Scholar : PubMed/NCBI | |
Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM and Kwon YG: The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal. 28:1642–1651. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Kim M, Park SJ, Lee C and Lim DS: Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 17:64–78. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mouchantaf R, Azakir BA, McPherson PS, Millard SM, Wood SA and Angers A: The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J Biol Chem. 281:38738–38747. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Mullett SJ and Stewart AF: Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem. 279:30800–30806. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pobbati AV and Hong W: Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 14:390–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pobbati A, Chan SW, Lee I, Song H and Hong W: Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure. 20:1135–1140. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, Coindre JM and Aurias A: YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosom Cancer. 49:1161–1171. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shen H, Withers HG, Yang N, Denson KE, Mussell AL, Truskinovsky A, Fan Q, Gelman IH, Frangou C and Zhang J: VGLL4 selectively represses YAP-dependent gene induction and tumorigenic phenotypes in breast cancer. Sci Rep. 7:61902017. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Yao F and He J, Lv B, Fang W, Zhu W, He G, Chen J and He J: Downregulation of VGLL4 in the progression of esophageal squamous cell carcinoma. Tumour Biol. 36:1289–1297. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin HS, Park HS, Shin JH, Kim DH, Jun SH, Lee CJ and Lee TH: A novel inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-inhibitory function of IAPs by nuclear sequestration. Biochem Biophys Res Commun. 412:454–459. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang E, Shen B, Mu X, Qin Y, Zhang F, Liu Y, Xiao J, Zhang P, Wang C, Tan M and Fan Y: Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein. Am J Cancer Res. 6:2901–2909. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith AL, Mitchell PJ, Shipley J, Gusterson BA, Rogers MV and Crompton MR: Pez: A novel human cDNA encoding protein tyrosine phosphatase- and ezrin-like domains. Biochem Biophys Res Commun. 209:959–965. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ogata M, Takada T, Mori Y, Oh-hora M, Uchida Y, Kosugi A, Miyake K and Hamaoka T: Effects of overexpression of PTP36, a putative protein tyrosine phosphatase, on cell adhesion, cell growth, and cytoskeletons in HeLa cells. J Biol Chem. 274:12905–12909. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tonks NK: Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park JI and Chen J: PTPN14 is required for the density-dependent control of YAP1. Genes Dev. 26:1959–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bosu DR and Kipreos ET: Cullin-RING ubiquitin ligases: Global regulation and activation cycles. Cell Div. 3:72008. View Article : Google Scholar : PubMed/NCBI | |
Jang LK, Lee ZH, Kim HH, Hill JM, Kim JD and Kwon BS: A novel leucine-rich repeat protein (LRR-1): Potential involvement in 4-1BB-mediated signal transduction. Mol Cells. 12:304–312. 2001.PubMed/NCBI | |
Walko G, Woodhouse S, Pisco AO, Rognoni E, Liakath-Ali K, Lichtenberger BM, Mishra A, Telerman SB, Viswanathan P, Logtenberg M, et al: A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun. 8:147442017. View Article : Google Scholar : PubMed/NCBI | |
Lim SK, Lu SY, Kang SA, Tan HJ, Li Z, Adrian Wee ZN, Guan JS, Reddy Chichili VP, Sivaraman J, Putti T, et al: Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TAZ transcriptional coactivator WBP2. Cancer Res. 76:6278–6289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Avruch J, Xavier R, Bardeesy N, Zhang X, Praskova M, Zhou D and Xia F: Rassf family of tumor suppressor polypeptides. J Biol Chem. 284:11001–11005. 2009. View Article : Google Scholar : PubMed/NCBI | |
Volodko N, Gordon M, Salla M, Ghazaleh HA and Baksh S: RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett. 588:2671–2684. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iwasa H, Hossain S and Hata Y: Tumor suppressor C-RASSF proteins. Cell Mol Life Sci. 75:1773–1787. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agathanggelou A, Cooper WN and Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 65:3497–3508. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richter AM, Pfeifer GP and Dammann RH: The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta 1796. 114–128. 2009. | |
Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH, Im CR, Lee JO, Yonehara S and Lim DS: Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 66:2562–2569. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Zhang X and Pfeifer GP: The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem. 286:6253–6261. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W and O'Neill E: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 27:962–975. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bitra A, Sistla S, Mariam J, Malvi H and Anand R: Rassf proteins as modulators of Mst1 kinase activity. Sci Rep. 7:450202017. View Article : Google Scholar : PubMed/NCBI | |
Donninger H, Allen N, Henson A, Pogue J, Williams A, Gordon L, Kassler S, Dunwell T, Latif F and Clark GJ: Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions. J Biol Chem. 286:18483–18491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, et al: Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Curr Biol. 25:3019–3034. 2015. View Article : Google Scholar : PubMed/NCBI | |
Burbee D, Forgacs E, ZöchbauerMüller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 93:691–699. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pefani DE, Pankova D, Abraham A, Grawenda A, Vlahov N, Scrace S and O'Neill E: TGF-β targets the Hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation. Mol Cell. 63:156–166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Suryaraja R, Anitha M, Anbarasu K, Kumari G and Mahalingam S: The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis. 4:e5652013. View Article : Google Scholar : PubMed/NCBI | |
Kumari G, Singhal PK, Rao MR and Mahalingam S: Nuclear transport of Ras-associated tumor suppressor proteins: Different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol. 367:1294–1311. 2007. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Song SJ, Kim SJ, Nakayama K, Nakayama KI and Lim D: Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition. Oncogene. 27:3176–3185. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Rong R, Sheikh MS and Huang Y: Cullin-4A·DNA damage-binding protein 1 E3 ligase complex targets tumor suppressor RASSF1A for degradation during mitosis. J Biol Chem. 286:6971–6978. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Li TT, Feng X, Hsiang E, Xiong Y, Guan KL and Lei QY: Targeted polyubiquitylation of RASSF1C by the mule and SCFβ-TrCP ligases in response to DNA damage. Biochem J. 441:227–236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, et al: A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 16:108–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HT, Kugler JM, Loya AC and Cohen SM: USP21 regulates Hippo pathway activity by mediating MARK protein turnover. Oncotarget. 8:64095–64105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, Stefan E, Bachmann VA, Oliva MA, Tiziana Storlazzi C, et al: Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun. 4:18222013. View Article : Google Scholar : PubMed/NCBI | |
Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY and Patterson C: Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol. 19:4535–4545. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ren A, Yan G, You B and Sun J: Down-regulation of mammalian sterile 20-like kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res. 68:2266–2274. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, et al: The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci. 31:9611–9619. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H and Hata Y: A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem. 150:199–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Michels S and Schmidt-Erfurth U: Photodynamic therapy with verteporfin: A new treatment in ophthalmology. Semin Ophthalmol. 16:201–206. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO and Pan D: Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26:1300–1305. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW and Pereira SP: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 110:1698–1704. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang W, Huang T, Zhou Y, Zhang J, Lung RWM, Tong JHM, Chan AWH, Zhang B, Wong CC, Wu F, et al: miR-375 is involved in Hippo pathway by targeting YAP1/TEAD4-CTGF axis in gastric carcinogenesis. Cell Death Dis. 9:922018. View Article : Google Scholar : PubMed/NCBI | |
Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, et al: A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 25:166–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu FX, Zhao B, Panupinthu N, Jewell J, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al: Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 150:780–791. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R and Ogretmen B: Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med. 4:761–775. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kelly MG, Mor G, Husband A, O'Malley DM, Baker L, Azodi M, Schwartz PE and Rutherford TJ: Phase II evaluation of phenoxodiol in combination with cisplatin or paclitaxel in women with platinum/taxane-refractory/resistant epithelial ovarian, fallopian tube, or primary peritoneal cancers. Int J Gynecol Cancer. 21:633–639. 2011. View Article : Google Scholar : PubMed/NCBI | |
Laubach JP, Mitsiades CS, Roccaro AM, Ghobrial IM, Anderson KC and Richardson PG: Clinical challenges associated with bortezomib therapy in multiple myeloma and Waldenstroms Macroglobulinemia. Leuk Lymphoma. 50:694–702. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Ren F, Wu Q, Jiang D, Li H, Peng Z, Wang J and Shi H: MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun. 449:432–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu JY, Heidersbach A, Kathiriya IS, Garay BI, Ivey KN, Srivastava D, Han Z and King IN: The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1. Development. 144:866–875. 2017. View Article : Google Scholar : PubMed/NCBI |