1
|
Dreher A, Rossing M, Kaczkowski B, Nielsen
FC and Norrild B: Differential expression of cellular microRNAs in
HPV-11 transfected cells. An analysis by three different array
platforms and qRT-PCR. Biochem Biophys Res Commun. 403:357–362.
2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liang P, Lv C, Jiang B, Long X, Zhang P,
Zhang M, Xie T and Huang X: MicroRNA profiling in denatured dermis
of deep burn patients. Burns. 38:534–540. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li P, Zhu N, Yi B, Wang N, Chen M, You X,
Zhao X, Solomides CC, Qin Y and Sun J: MicroRNA-663 regulates human
vascular smooth muscle cell phenotypic switch and vascular
neointimal formation. Circ Res. 113:1117–1127. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Miao CG, Shi WJ, Xiong YY, Yu H, Zhang XL,
Qin MS, Du CL, Song TW, Zhang B and Li J: MicroRNA-663 activates
the canonical Wnt signaling through the adenomatous polyposis coli
suppression. Immunol Lett. 166:45–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hu W, Xu S, Yao B, Hong M, Wu X, Pei H,
Chang L, Ding N, Gao X, Ye C, et al: MiR-663 inhibits
radiation-induced bystander effects by targeting TGFB1 in a
feedback mode. RNA Biol. 11:1189–1198. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Latruffe N, Lançon A, Frazzi R, Aires V,
Delmas D, Michaille JJ, Djouadi F, Bastin J and Cherkaoui-Malki M:
Exploring new ways of regulation by resveratrol involving miRNAs,
with emphasis on inflammation. Ann NY Acad Sci 1348. 97–106. 2015.
View Article : Google Scholar
|
7
|
Jiao L, Deng Z, Xu C, Yu Y, Li Y, Yang C,
Chen J, Liu Z, Huang G, Li LC, et al: miR-663 induces
castration-resistant prostate cancer transformation and predicts
clinical recurrence. J Cell Physiol. 229:834–844. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yi C, Wang Q, Wang L, Huang Y, Li L, Liu
L, Zhou X, Xie G, Kang T, Wang H, et al: MiR-663, a microRNA
targeting p21WAF1/CIP1, promotes the
proliferation and tumorigenesis of nasopharyngeal carcinoma.
Oncogene. 31:4421–4433. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liang S, Zhang N, Deng Y, Chen L, Zhang Y,
Zheng Z, Luo W, Lv Z, Li S and Xu T: miR-663 promotes NPC cell
proliferation by directly targeting CDKN2A. Mol Med Rep.
16:4863–4870. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shi Y, Chen C, Yu SZ, Liu Q, Rao J, Zhang
HR, Xiao HL, Fu TW, Long H, He ZC, et al: miR-663 suppresses
oncogenic function of CXCR4 in glioblastoma. Clin Cancer
Res. 21:4004–4013. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Q, Cheng Q, Chen Z, Peng R, Chen R, Ma
Z, Wan X, Liu J, Meng M, Peng Z, et al: MicroRNA-663 inhibits the
proliferation, migration and invasion of glioblastoma cells via
targeting TGF-β1. Oncol Rep. 35:1125–1134. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zang W, Wang Y, Wang T, Du Y, Chen X, Li M
and Zhao G: miR-663 attenuates tumor growth and invasiveness by
targeting eEF1A2 in pancreatic cancer. Mol Cancer. 14:372015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Tian W, Du Y, Ma Y, Gu L, Zhou J and Deng
D: MALAT1-miR663a negative feedback loop in colon cancer
cell functions through direct miRNA-lncRNA binding. Cell Death Dis.
9:8572018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang W, Li J, Guo X, Zhao Y and Yuan X:
miR-663a inhibits hepatocellular carcinoma cell proliferation and
invasion by targeting HMGA2. Biomed Pharmacother. 81:431–438. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Afonyushkin T, Oskolkova OV and Bochkov
VN: Permissive role of miR-663 in induction of VEGF and activation
of the ATF4 branch of unfolded protein response in endothelial
cells by oxidized phospholipids. Atherosclerosis. 225:50–55. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Tili E, Michaille JJ, Adair B, Alder H,
Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N and Croce
CM: Resveratrol decreases the levels of miR-155 by upregulating
miR-663, a microRNA targeting JunB, JunD. Carcinogenesis.
31:1561–1566. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Acevedo N, Reinius LE, Vitezic M, Fortino
V, Söderhäll C, Honkanen H, Veijola R, Simell O, Toppari J, Ilonen
J, et al: Age-associated DNA methylation changes in immune genes,
histone modifiers and chromatin remodeling factors within 5 years
after birth in human blood leukocytes. Clin Epigenetics. 7:342015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Allan RK and Ratajczak T: Versatile TPR
domains accommodate different modes of target protein recognition
and function. Cell Stress Chaperones. 16:353–367. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Blatch GL and Lässle M: The
tetratricopeptide repeat: A structural motif mediating
protein-protein interactions. BioEssays. 21:932–939. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sobin LH and Wittekind Ch: International
Union Against Cancer (UICC): TNM classification of malignant
tumors. 6th. Wiley; New York: 2002,
|
22
|
Marullo M, Zuccato C, Mariotti C, Lahiri
N, Tabrizi SJ, Di Donato S and Cattaneo E: Expressed Alu repeats as
a novel, reliable tool for normalization of real-time quantitative
RT-PCR data. Genome Biol. 11:R92010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2ΔΔCT method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tian W, Qu L, Meng L, Liu C, Wu J and Shou
C: Phosphatase of regenerating liver-3 directly interacts with
integrin β1 and regulates its phosphorylation at tyrosine 783. BMC
Biochem. 13:222012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ullman TA and Itzkowitz SH: Intestinal
inflammation and cancer. Gastroenterology. 140:1807–1816. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu L, Nishihara R, Qian ZR, Tabung FK,
Nevo D, Zhang X, Song M, Cao Y, Mima K, Masugi Y, et al:
Association between inflammatory diet pattern and risk of
colorectal carcinoma subtypes classified by immune responses to
tumor. Gastroenterology. 153:1517–1530.e14. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shivappa N, Godos J, Hébert JR, Wirth MD,
Piuri G, Speciani AF and Grosso G: Dietary inflammatory index and
colorectal cancer risk - a meta-analysis. Nutrients. 9:92017.
View Article : Google Scholar :
|
28
|
Pastille E, Frede A, McSorley HJ, Gräb J,
Adamczyk A, Kollenda S, Hansen W, Epple M, Buer J, Maizels RM, et
al: Intestinal helminth infection drives carcinogenesis in
colitis-associated colon cancer. PLoS Pathog. 13:e10066492017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Biswas S, Davis H, Irshad S, Sandberg T,
Worthley D and Leedham S: Microenvironmental control of stem cell
fate in intestinal homeostasis and disease. J Pathol. 237:135–145.
2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Consortium CCLE: Cancer Cell Line
Encyclopedia Consortium; Genomics of Drug Sensitivity in Cancer
Consortium: Pharmacogenomic agreement between two cancer cell line
data sets. Nature. 528:84–87. 2015.PubMed/NCBI
|
31
|
Uhlen M, Zhang C, Lee S, Sjöstedt E,
Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al: A pathology atlas of the human cancer transcriptome. Science.
357:3572017. View Article : Google Scholar
|
32
|
Aguirre-Gamboa R, Gomez-Rueda H,
Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R,
Rodriguez-Barrientos A, Tamez-Peña JG and Treviño V: SurvExpress:
An online biomarker validation tool and database for cancer gene
expression data using survival analysis. PLoS One. 8:e742502013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Loboda A, Nebozhyn MV, Watters JW, Buser
CA, Shaw PM, Huang PS, Van't Veer L, Tollenaar RA, Jackson DB,
Agrawal D, et al: EMT is the dominant program in human colon
cancer. BMC Med Genomics. 4:92011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sveen A, Agesen TH, Nesbakken A, Rognum
TO, Lothe RA and Skotheim RI: Transcriptome instability in
colorectal cancer identified by exon microarray analyses:
Associations with splicing factor expression levels and patient
survival. Genome Med. 3:322011. View
Article : Google Scholar : PubMed/NCBI
|