1
|
Durocher D and Jackson SP: DNA-PK, ATM and
ATR as sensors of DNA damage: Variations on a theme? Curr Opin Cell
Biol. 13:225–231. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kerzendorfer C and O'Driscoll M: Human DNA
damage response and repair deficiency syndromes: Linking genomic
instability and cell cycle checkpoint proficiency. DNA Rep.
8:1139–1152. 2009. View Article : Google Scholar
|
3
|
Uckelmann M and Sixma TK: Histone
ubiquitination in the DNA damage response. DNA Repair. 56:92–101.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dantuma NP and van Attikum H:
Spatiotemporal regulation of posttranslational modifications in the
DNA damage response. EMBO J. 35:6–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fuchs G, Shema E, Vesterman R, Kotler E,
Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M,
et al: RNF20 and USP44 regulate stem cell differentiation by
modulating H2B monoubiquitylation. Mol Cell. 46:662–673. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Minsky N, Shema E, Field Y, Schuster M,
Segal E and Oren M: Monoubiquitinated H2B is associated with the
transcribed region of highly expressed genes in human cells. Nat
Cell Biol. 10:483–488. 2008. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Zhu B, Zheng Y, Pham AD, Mandal SS,
Erdjument-Bromage H, Tempst P and Reinberg D: Monoubiquitination of
human Histone H2B: The factors involved and their roles in
HOX gene regulation. Mol Cell. 20:601–611. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Thorne AW, Sautiere P, Briand G and
Crane-Robinson C: The structure of ubiquitinated Histone H2B. EMBO
J. 6:1005–1010. 1987. View Article : Google Scholar : PubMed/NCBI
|
9
|
Weake VM and Workman JL: Histone
ubiquitination: Triggering gene activity. Mol Cell. 29:653–663.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shanbhag NM, Rafalska-Metcalf IU,
Balane-Bolivar C, Janicki SM and Greenberg RA: ATM-dependent
chromatin changes silence transcription in cis to DNA double-strand
breaks. Cell. 141:970–981. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu Z, Song Z, Li G, Tu H, Liu W, Liu Y,
Wang P, Wang Y, Cui X, Liu C, et al: H2B ubiquitination regulates
meiotic recombination by promoting chromatin relaxation. Nucleic
Acids Res. 44:9681–9697. 2016.PubMed/NCBI
|
12
|
Pavri R, Zhu B, Li G, Trojer P, Mandal S,
Shilatifard A and Reinberg D: Histone H2B monoubiquitination
functions cooperatively with FACT to regulate elongation by RNA
polymerase II. Cell. 125:703–717. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang XY, Varthi M, Sykes SM, Phillips C,
Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL and McMahon SB: The
putative cancer stem cell marker USP22 is a subunit of the human
SAGA complex required for activated transcription and cell-cycle
progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shema E, Tirosh I, Aylon Y, Huang J, Ye C,
Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, et
al: The Histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a
putative tumor suppressor through selective regulation of gene
expression. Genes Dev. 22:2664–2676. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Moyal L, Lerenthal Y, Gana-Weisz M, Mass
G, So S, Wang SY, Eppink B, Chung YM, Shalev G, Shema E, et al:
Requirement of ATM-dependent monoubiquitylation of Histone H2B for
timely repair of DNA double-strand breaks. Mol Cell. 41:529–542.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee SY and Choi Y: TRAF-interacting
protein (TRIP): A novel component of the tumor necrosis factor
receptor (TNFR)-and CD30-TRAF signaling complexes that inhibits
TRAF2-mediated NF-kappaB activation. J Exp Med. 185:1275–1286.
1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rothe M, Pan MG, Henzel WJ, Ayres TM and
Goeddel DV: The TNFR2-TRAF signaling complex contains two novel
proteins related to baculoviral inhibitor of apoptosis proteins.
Cell. 83:1243–1252. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Besse A, Campos AD, Webster WK and Darnay
BG: TRAF-interacting protein (TRIP) is a RING-dependent ubiquitin
ligase. Biochem Biophys Res Commun. 359:660–664. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Regamey A, Hohl D, Liu JW, Roger T,
Kogerman P, Toftgard R and Huber M: The tumor suppressor CYLD
interacts with TRIP and regulates negatively nuclear factor kappaB
activation by tumor necrosis factor. J Exp Med. 198:1959–1964.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou Q and Geahlen R: The protein-tyrosine
kinase Syk interacts with TRAF-interacting protein TRIP in breast
epithelial cells. Oncogene. 28:1348–1356. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Deshaies RJ and Joazeiro CA: RING domain
E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chapard C, Meraldi P, Gleich T, Bachmann
D, Hohl D and Huber M: TRAIP is a regulator of the spindle assembly
checkpoint. J Cell Sci. 127:5149–5156. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Harley ME, Murina O, Leitch A, Higgs MR,
Bicknell LS, Yigit G, Blackford AN, Zlatanou A, Mackenzie KJ, Reddy
K, et al: TRAIP promotes DNA damage response during genome
replication and is mutated in primordial dwarfism. Nat Genet.
48:36–43. 2016. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Feng W, Guo Y, Huang J, Deng Y, Zang J and
Huen MS: TRAIP regulates replication fork recovery and progression
via PCNA. Cell Discov. 2:160162016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Soo Lee N, Jin Chung H, Kim HJ, Yun Lee S,
Ji JH, Seo Y, Hun Han S, Choi M, Yun M, Lee SG, et al: TRAIP/RNF206
is required for recruitment of RAP80 to sites of DNA damage. Nat
Commun. 7:104632016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hoffmann S, Smedegaard S, Nakamura K,
Mortuza GB, Räschle M, Ibañez de Opakua A, Oka Y, Feng Y, Blanco
FJ, Mann M, et al: TRAIP is a PCNA-binding ubiquitin ligase that
protects genome stability after replication stress. J Cell Biol.
212:63–75. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim H, Huang J and Chen J: CCDC98 is a
BRCA1-BRCT domain-binding protein involved in the DNA damage
response. Nat Struct Mol Biol. 14:710–715. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim H, Chen J and Yu X: Ubiquitin-binding
protein RAP80 mediates BRCA1-dependent DNA damage response.
Science. 316:1202–1205. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lorick KL, Jensen JP, Fang S, Ong AM,
Hatakeyama S and Weissman AM: RING fingers mediate
ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc
Natl Acad Sci USA. 96:11364–11369. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dela Cruz CS, Tanoue LT and Matthay RA:
Lung cancer: Epidemiology, etiology, and prevention. Clin Chest
Med. 32:605–644. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Jung Y and Lippard SJ: Direct cellular
responses to platinum-induced DNA damage. Chem Rev. 107:1387–1407.
2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pearl LH, Schierz AC, Ward SE, Al-Lazikani
B and Pearl FM: Therapeutic opportunities within the DNA damage
response. Nat Rev Cancer. 15:166–180. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
European Medicines Agency: Lynparza
recommended for approval in ovarian cancer. https://www.ema.europa.eu/en/news/lynparza-recommended-approval-ovarian-cancer
|
37
|
Chen S, Jing Y, Kang X, Yang L, Wang DL,
Zhang W, Zhang L, Chen P, Chang JF, Yang XM, et al: Histone H2B
monoubiquitination is a critical epigenetic switch for the
regulation of autophagy. Nucleic Acids Res. 45:1144–1158.
2017.PubMed/NCBI
|
38
|
Jackson SP and Durocher D: Regulation of
DNA damage responses by ubiquitin and SUMO. Mol Cell. 49:795–807.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schwertman P, Bekker-Jensen S and Mailand
N: Regulation of DNA double-strand break repair by ubiquitin and
ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394. 2016.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Mattiroli F, Vissers JH, van Dijk WJ, Ikpa
P, Citterio E, Vermeulen W, Marteijn JA and Sixma TK: RNF168
ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling.
Cell. 150:1182–1195. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kalb R, Mallery DL, Larkin C, Huang JT and
Hiom K: BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Rep.
8:999–1005. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wood A, Krogan NJ, Dover J, Schneider J,
Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, et
al: Bre1, an E3 ubiquitin ligase required for recruitment and
substrate selection of Rad6 at a promoter. Mol Cell. 11:267–274.
2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang H, Wang L, Erdjument-Bromage H, Vidal
M, Tempst P, Jones RS and Zhang Y: Role of histone H2A
ubiquitination in polycomb silencing. Nature. 431:873–878. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee
E, Bosco G and Lee LA: TRIP/NOPO E3 ubiquitin ligase promotes
ubiquitylation of DNA polymerase η. Development. 141:1332–1341.
2014. View Article : Google Scholar : PubMed/NCBI
|