1
|
Yapa S, Mulla O, Green V, England J and
Greenman J: The role of chemokines in thyroid carcinoma. Thyroid.
27:1347–1359. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lim H, Devesa SS, Sosa JA, Check D and
Kitahara CM: Trends in thyroid cancer incidence and mortality in
the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Haugen BR, Alexander EK, Bible KC, Doherty
GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM,
Schlumberger M, et al: 2015 American thyroid association management
guidelines for adult patients with thyroid nodules and
differentiated thyroid cancer: The American thyroid association
guidelines task force on thyroid nodules and differentiated thyroid
cancer. Thyroid. 26:1–133. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ibrahim EY and Busaidy NL: Treatment and
surveillance of advanced, metastatic iodine-resistant
differentiated thyroid cancer. Curr Opin Oncol. 29:151–158.
2017.PubMed/NCBI
|
5
|
Nikiforov YE: Role of molecular markers in
thyroid nodule management: Then and now. Endocr Pract. 23:979–988.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Romei C, Ciampi R and Elisei R: A
comprehensive overview of the role of the RET proto-oncogene in
thyroid carcinoma. Nat Rev Endocrinol. 12:192–202. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bogachek MV, De Andrade JP and Weigel RJ:
Regulation of epithelial-mesenchymal transition through SUMOylation
of transcription factors. Cancer Res. 75:11–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang RY, Guilford P and Thiery JP: Early
events in cell adhesion and polarity during epithelial-mesenchymal
transition. J Cell Sci. 125:4417–4422. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Tam WL and Weinberg RA: The epigenetics of
epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449.
2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vasko V, Espinosa AV, Scouten W, He H,
Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la
Chapelle A, et al: Gene expression and functional evidence of
epithelial-to-mesenchymal transition in papillary thyroid carcinoma
invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen LL, Gao GX, Shen FX, Chen X, Gong XH
and Wu WJ: SDC4 gene silencing favors human papillary thyroid
carcinoma cell apoptosis and inhibits epithelial mesenchymal
transition via Wnt/β-catenin pathway. Mol Cells. 41:853–867.
2018.PubMed/NCBI
|
15
|
Puli OR, Danysh BP, McBeath E, Sinha DK,
Hoang NM, Powell RT, Danysh HE, Cabanillas ME, Cote GJ and Hofmann
MC: The transcription factor ETV5 mediates BRAFV600E-induced
proliferation and TWIST1 expression in papillary thyroid cancer
cells. Neoplasia. 20:1121–1134. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yan R, Yang T, Zhai H, Zhou Z, Gao L and
Li Y: MicroRNA-150-5p affects cell proliferation, apoptosis, and
EMT by regulation of the BRAFV600E mutation in papillary
thyroid cancer cells. J Cell Biochem. 119:8763–8772. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Gu J, Lin X, Yan W, Yang W and Wu
G: lncRNA BANCR promotes EMT in PTC via the Raf/MEK/ERK signaling
pathway. Oncol Lett. 15:5865–5870. 2018.PubMed/NCBI
|
18
|
Haupt H and Baudner S: Isolation and
characterization of an unknown, leucine-rich
3.1-S-alpha2-glycoprotein from human serum (author's transl). Hoppe
Seylers Z Physiol Chem. 358:639–646. 1977.(In German). View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang X, Abraham S, McKenzie JAG, Jeffs N,
Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et
al: LRG1 promotes angiogenesis by modulating endothelial TGF-beta
signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Furukawa K, Kawamoto K, Eguchi H, Tanemura
M, Tanida T, Tomimaru Y, Akita H, Hama N, Wada H, Kobayashi S, et
al: Clinicopathological significance of leucine-rich
α2-glycoprotein-1 in sera of patients with pancreatic cancer.
Pancreas. 44:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lindén M, Lind SB, Mayrhofer C, Segersten
U, Wester K, Lyutvinskiy Y, Zubarev R, Malmström PU and Pettersson
U: Proteomic analysis of urinary biomarker candidates for nonmuscle
invasive bladder cancer. Proteomics. 12:135–144. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Andersen JD, Boylan KL, Jemmerson R,
Geller MA, Misemer B, Harrington KM, Weivoda S, Witthuhn BA,
Argenta P, Vogel RI and Skubitz AP: Leucine-rich
alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian
cancer patients. J Ovarian Res. 3:212010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sandanayake NS, Sinclair J, Andreola F,
Chapman MH, Xue A, Webster GJ, Clarkson A, Gill A, Norton ID, Smith
RC, et al: A combination of serum leucine-rich α-2-glycoprotein 1,
CA19-9 and interleukin-6 differentiate biliary tract cancer from
benign biliary strictures. Br J Cancer. 105:1370–1378. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong D, He G, Zhao S, Li J, Lang Y, Ye W,
Li Y, Jiang C and Li X: LRG1 modulates invasion and migration of
glioma cell lines through TGF-β signaling pathway. Acta Histochem.
117:551–558. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang J, Zhu L, Fang J, Ge Z and Li X:
LRG1 modulates epithelial-mesenchymal transition and angiogenesis
in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res.
35:292016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Alegria-Schaffer A, Lodge A and Vattem K:
Performing and optimizing Western blots with an emphasis on
chemiluminescent detection. Methods Enzymol. 463:573–599. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Meng X, Kong DH, Li N, Zong ZH, Liu BQ, Du
ZX, Guan Y, Cao L and Wang HQ: Knockdown of BAG3 induces
epithelial-mesenchymal transition in thyroid cancer cells through
ZEB1 activation. Cell Death Dis. 5:e10922014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang C, Jacobson K and Schaller MD: MAP
kinases and cell migration. J Cell Sci. 117:4619–4628. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Okada T, Sinha S, Esposito I, Schiavon G,
López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M,
et al: The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT
by restraining Ras-MAPK signalling. Nat Cell Biol. 17:81–94. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hu Y, Wang H, Chen E, Xu Z, Chen B and Lu
G: Candidate microRNAs as biomarkers of thyroid carcinoma: A
systematic review, meta-analysis, and experimental validation.
Cancer Med. 5:2602–2614. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xing M, Haugen BR and Schlumberger M:
Progress in molecular-based management of differentiated thyroid
cancer. Lancet. 381:1058–1069. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nikiforov YE, Ohori NP, Hodak SP, Carty
SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT,
et al: Impact of mutational testing on the diagnosis and management
of patients with cytologically indeterminate thyroid nodules: A
prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab.
96:3390–3397. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Leboulleux S, Bastholt L, Krause T, de la
Fouchardiere C, Tennvall J, Awada A, Gómez JM, Bonichon F,
Leenhardt L, Soufflet C, et al: Vandetanib in locally advanced or
metastatic differentiated thyroid cancer: A randomised,
double-blind, phase 2 trial. Lancet Oncol. 13:897–905. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kloos RT, Ringel MD, Knopp MV, Hall NC,
King M, Stevens R, Liang J, Wakely PE Jr, Vasko VV, Saji M, et al:
Phase II trial of sorafenib in metastatic thyroid cancer. J Clin
Oncol. 27:1675–1684. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sherman SI, Jarzab B, Cabanillas ME,
Licitra LF, Pacini F, Martins R, Robinson B, Ball D, McCaffrey J,
Shah MH, et al: A phase II trial of the multi-targeted kinase
inhibitor, lenvatinib (E7080), in advanced radioiodine-refractory
differentiated thyroid cancer (DTC). J Clin Oncol. 29
(Suppl):S55032011. View Article : Google Scholar
|
37
|
Wang Y, Xu J and Zhang X, Wang C, Huang Y,
Dai K and Zhang X: TNF-α-induced LRG1 promotes angiogenesis and
mesenchymal stem cell migration in the subchondral bone during
osteoarthritis. Cell Death Dis. 8:e27152017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: At the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hardy RG, Vicente-Dueñas C,
González-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C,
Ross JA and Sánchez-García I: Snail family transcription factors
are implicated in thyroid carcinogenesis. Am J Pathol.
171:1037–1046. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mulholland DJ, Kobayashi N, Ruscetti M,
Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK
activation cooperate to promote EMT and metastasis initiated from
prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jordà M, Olmeda D, Vinyals A, Valero E,
Cubillo E, Llorens A, Cano A and Fabra A: Upregulation of MMP-9 in
MDCK epithelial cell line in response to expression of the Snail
transcription factor. J Cell Sci. 118:3371–3385. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hong J, Zhou J, Fu J, He T, Qin J, Wang L,
Liao L and Xu J: Phosphorylation of serine 68 of Twist1 by MAPKs
stabilizes Twist1 protein and promotes breast cancer cell
invasiveness. Cancer Res. 71:3980–3990. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Uttamsingh S, Bao X, Nguyen KT, Bhanot M,
Gong J, Chan JL, Liu F, Chu TT and Wang LH: Synergistic effect
between EGF and TGF-beta1 in inducing oncogenic properties of
intestinal epithelial cells. Oncogene. 27:2626–2634. 2008.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Xie L, Law BK, Chytil AM, Brown KA, Aakre
ME and Moses HL: Activation of the Erk pathway is required for
TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu L, Hébert MC and Zhang YE: TGF-beta
receptor-activated p38 MAP kinase mediates Smad-independent
TGF-beta responses. EMBO J. 21:3749–3759. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bi CL, Zhang YQ, Li B, Guo M and Fu YL:
MicroRNA-520a-3p suppresses epithelial-mesenchymal transition,
invasion, and migration of papillary thyroid carcinoma cells via
the JAK1-mediated JAK/STAT signaling pathway. J Cell Physiol.
234:4054–4067. 2019. View Article : Google Scholar : PubMed/NCBI
|