
RUNX family: Oncogenes or tumor suppressors (Review)
- Authors:
- Beatriz Andrea Otálora‑Otálora
- Berta Henríquez
- Liliana López‑Kleine
- Adriana Rojas
-
Affiliations: Medicine Faculty, National University of Colombia, Bogotá 111321, Colombia, School of Biochemistry, Medicine and Science Faculty, San Sebastián University, Santiago 7510157, Chile, Statistics Department, National University of Colombia, Bogotá 111321, Colombia, Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia - Published online on: May 6, 2019 https://doi.org/10.3892/or.2019.7149
- Pages: 3-19
-
Copyright: © Otálora‑Otálora et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Hanahan D and Weinberg R: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg R: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Green G, Carmona R, Zakeri K, Lee CH, Borgan S, Marhoon Z, Sharabi A and Mell LK: Specificity of genetic biomarker studies in cancer research: A systematic review. PLoS One. 11:e01564892016. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bhagwat AS and Vakoc CR: Targeting transcription factors in cancer. Trends Cancer. 1:53–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yeh JE, Toniolo PA and Frank DA: Targeting transcription factors: Promising new strategies for cancer therapy. Curr Opin Oncol. 25:652–658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Darnell JE: Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2:740–749. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chuang LS, Ito K and Ito Y: RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer. 132:1260–1271. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blyth K, Cameron ER and Neil JC: The RUNX genes: Gain or loss of function in cancer. Nat Rev Cancer. 5:376–387. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dowdy CR, Xie R, Frederick D, Hussain S, Zaidi SK, Vradii D, Javed A, Li X, Jones SN, Lian JB, et al: Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear targeting and transactivation. Hum Mol Genet. 19:1048–1057. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamagata T, Maki K and Mitani K: Runx1/AML1 in normal and abnormal hematopoiesis. Int J Hematol. 82:1–8. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL and Stein GS: Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 14:1–41. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lian JB and Stein GS: Runx2/Cbfa1: A multifunctional regulator of bone formation. Curr Pharm Des. 9:2677–2685. 2003. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab. 21:193–197. 2003.PubMed/NCBI | |
Fukamachi H: Runx3 controls growth and differentiation of gastric epithelial cells in mammals. Dev Growth Differ. 48:1–13. 2006. View Article : Google Scholar : PubMed/NCBI | |
Osato M: Point mutations in the RUNX1/AML1 gene: Another actor in RUNX leukemia. Oncogene. 23:4284–4296. 2004. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer E, Férec C and De Braekeleer M: RUNX1 translocations in malignant hemopathies. Anticancer Res. 29:1031–1037. 2009.PubMed/NCBI | |
Niini T, Kanerva J, Vettenranta K, Saarinen-Pihkala UM and Knuutila S: AML1 gene amplification: A novel finding in childhood acute lymphoblastic leukemia. Haematologica. 85:362–366. 2000.PubMed/NCBI | |
Chuang LS and Ito Y: RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 29:2605–2615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Taniuchi I, Osato M and Ito Y: Runx1: No longer just for leukemia. EMBO J. 31:4098–4099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sadikovic B, Thorner P, Chilton-MacNeill S, Martin JW, Cervigne NK, Squire J and Zielenska M: Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 10:2022010. View Article : Google Scholar : PubMed/NCBI | |
Kurek KC, Del Mare S, Salah Z, Abdeen S, Sadiq H, Lee SH, Gaudio E, Zanesi N, Jones KB, DeYoung B, et al: Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res. 70:5577–5586. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lau CC, Harris CP, Lu XY, Perlaky L, Gogineni S, Chintagumpala M, Hicks J, Johnson ME, Davino NA, Huvos AG, et al: Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer. 39:11–21. 2004. View Article : Google Scholar : PubMed/NCBI | |
Endo T, Ohta K and Kobayashi T: Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J Clin Endocrinol Metab. 93:2409–2412. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dalle Carbonare L, Frigo A, Francia G, Davì MV, Donatelli L, Stranieri C, Brazzarola P, Zatelli MC, Menestrina F and Valenti MT: Runx2 mRNA expression in the tissue, serum, and circulating non-hematopoietic cells of patients with thyroid cancer. J Clin Endocrinol Metab. 97:E1249–E1256. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, et al: Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63:2631–2637. 2003.PubMed/NCBI | |
Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, Stein GS and Gerstenfeld LC: Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 64:4506–4513. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leong DT, Lim J, Goh X, Pratap J, Pereira BP, Kwok HS, Nathan SS, Dobson JR, Lian JB, Ito Y, et al: Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Res. 12:R892010. View Article : Google Scholar : PubMed/NCBI | |
Friedrich MJ, Rad R, Langer R, Voland P, Hoefler H, Schmid RM, Prinz C and Gerhard M: Lack of RUNX3 regulation in human gastric cancer. J Pathol. 210:141–146. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kilbey A, Terry A, Cameron ER and Neil JC: Oncogene-induced senescence: An essential role for Runx. Cell Cycle. 7:2333–2340. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J and Cameron ER: Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis. 45:117–123. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cameron ER and Neil JC: The Runx genes: Lineage-specific oncogenes and tumor suppressors. Oncogene. 23:4308–4314. 2004. View Article : Google Scholar : PubMed/NCBI | |
Coffman JA: Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int. 27:315–324. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, Marlow H, Levanon D, Groner Y, Finnerty JR and Gat U: The evolutionary origin of the Runx/CBFbeta transcription factors-studies of the most basal metazoans. BMC Evol Biol. 8:2282008. View Article : Google Scholar : PubMed/NCBI | |
Nam S, Jin YH, Li QL, Lee KY, Jeong GB, Ito Y, Lee J and Bae SC: Expression pattern, regulation, and biological role of runt domain transcription factor, run, in Caenorhabditis elegans. Mol Cell Biol. 22:547–554. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rennert J, Coffman JA, Mushegian AR and Robertson AJ: The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol Biol. 3:42003. View Article : Google Scholar : PubMed/NCBI | |
Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ and Coffman JA: CBFbeta is a facultative Runx partner in the sea urchin embryo. BMC Biol. 4:42006. View Article : Google Scholar : PubMed/NCBI | |
Warren AJ, Bravo J, Warren AJ and Rabbitts TH: Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFβ. EMBO J. 19:3004–3015. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Bae SC and Chuang LS: The RUNX family: Developmental regulators in cancer. Nat Rev Cancer. 15:81–95. 2015. View Article : Google Scholar : PubMed/NCBI | |
Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L and Groner Y: AML1, AML2, and AML3, the human members of the runt domain gene-family: CDNA structure, expression, and chromosomal localization. Genomics. 23:425–432. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bae SC, Takahashi E, Zhang YW, Ogawa E, Shigesada K, Namba Y, Satake M and Ito Y: Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene. 159:245–248. 1995. View Article : Google Scholar : PubMed/NCBI | |
Levanon D and Groner Y: Structure and regulated expression of mammalian RUNX genes. Oncogene. 23:4211–4219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bangsow C, Rubins N, Glusman G, Bernstein Y, Negreanu V, Goldenberg D, Lotem J, Ben-Asher E, Lancet D, Levanon D and Groner Y: The RUNX3 gene-sequence, structure and regulated expression. Gene. 279:221–232. 2001. View Article : Google Scholar : PubMed/NCBI | |
Marshall LJ, Moore AC, Ohki M, Kitabayashi I, Patterson D and Ornelles DA: RUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis. J Virol. 82:6395–408. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stock M and Otto F: Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem. 95:506–517. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E and Ohki M: Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23:2762–2769. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, Pepling M and Gergen P: The runt domain identifies a new family of heterometric transcriptional regulators. Trends Genet. 9:338–341. 1993. View Article : Google Scholar : PubMed/NCBI | |
Nagata T, Gupta V, Sorce D, Kim WY, Sali A, Chait BT, Shigesada K, Ito Y and Werner MH: Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol. 6:615–619. 1999. View Article : Google Scholar : PubMed/NCBI | |
Williams AF and Barclay AN: The immunoglobulin superfamily-domains for cell surface recognition. Annu Rev Immunol. 6:381–405. 1988. View Article : Google Scholar : PubMed/NCBI | |
Javed A, Guo B, Hiebert S, Choi JY, Green J, Zhao SC, Osborne MA, Stifani S, Stein JL, Lian JB, et al: Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci. 113:2221–2231. 2000.PubMed/NCBI | |
Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y and Hirai H: TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun. 252:582–589. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zaidi SK, Javed A, Choi JY, van Wijnen AJ, Stein JL, Lian JB and Stein GS: A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J Cell Sci. 114:3093–3102. 2001.PubMed/NCBI | |
Stein GS, Lian JB, Stein JL, van Wijnen AJ, Choi JY, Pratap J and Zaidi SK: Temporal and spatial parameters of skeletal gene expression: Targeting RUNX factors and their coregulatory proteins to subnuclear domains. Connect Tissue Res. 44 (Suppl 1):S149–S153. 2003. View Article : Google Scholar | |
Harrington KS, Javed A, Drissi H, McNeil S, Lian JB, Stein JL, Van Wijnen AJ, Wang YL and Stein GS: Transcription factors RUNX1/AML1 and RUNX2/Cbfa1 dynamically associate with stationary subnuclear domains. J Cell Sci. 115:4167–4176. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W and Nishihara T: Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 101:1266–1277. 2007. View Article : Google Scholar : PubMed/NCBI | |
Terry A, Kilbey A, Vaillant F, Stewart M, Jenkins A, Cameron E and Neil JC: Conservation and expression of an alternative 3′exon of Runx2 encoding a novel proline-rich C-terminal domain. Gene. 336:115–125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, et al: Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell. 104:755–767. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pozner A, Goldenberg D, Negreanu V, Le S, Elroy-stein O, Levanon D and Groner Y: Transcription-coupled translation control of AML1/RUNX1 is mediated by Cap-and internal ribosome entry site-dependent mechanisms. Mol Cell Biol. 20:2297–2307. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xiao ZS, Simpson LG and Quarles LD: IRES-dependent translational control of Cbfa1/Runx2 expression. J Cell Biochem. 88:493–505. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Sun L, Wang G, Chen B and Luo F: RUNX1: A regulator of NF-kB signaling in pulmonary diseases. Curr Protein Pept Sci. 19:172–178. 2018.PubMed/NCBI | |
Webber BR, Iacovino M, Choi SH, Tolar J, Kyba M and Blazar BR: DNA methylation of Runx1 regulatory regions correlates with transition from primitive to definitive hematopoietic potential in vitro and in vivo. Blood. 122:2978–2986. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sood R, Kamikubo Y and Liu P: Role of RUNX1 in hematological malignancies. Blood. 129:2070–2082. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jonason JH, Xiao G, Zhang M, Xing L and Chen D: Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res. 88:693–703. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Aguilar R, Henriquez B, Lian JB, Stein JL, Stein GS, van Wijnen AJ, van Zundert B, Allende ML and Montecino M: Epigenetic control of the bone-master Runx2 gene during osteoblast-lineage commitment by the histone demethylase JARID1B/KDM5B. J Biol Chem. 290:28329–28342. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Riordan M and Grosschedl R: Transcriptional regulation of early B-lymphocyte differentiation. Immunol Rev. 175:94–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Leiden JM and Thompson CB: Transcriptional regulation of T-cell genes during T-cell development. Curr Opin Immunol. 6:231–237. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kurklu B, Whitehead RH, Ong EK, Minamoto T, Fox JG, Mann JR, Judd LM, Giraud AS and Menheniott TR: Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. Oncogene. 34:2856–2866. 2015. View Article : Google Scholar : PubMed/NCBI | |
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, et al: An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev. 30:2607–2622. 2016. View Article : Google Scholar : PubMed/NCBI | |
Levanon D, Lotem J, Negreanu V, et al: Transcription regulation in development and disease. Life Sci Open Day. 1–3. 2008. | |
Kojo S, Tanaka H, Endo TA, Muroi S, Liu Y, Seo W, Tenno M, Kakugawa K, Naoe Y, Nair K, et al: Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes. Nat Commun. 8:7022017. View Article : Google Scholar : PubMed/NCBI | |
Cho JY, Akbarali Y, Zerbini LF, Gu X, Boltax J, Wang Y, Oettgen P, Zhang DE and Libermann TA: Isoforms of the Ets transcription factor NERF/ELF-2 physically interact with AML1 and mediate opposing effects on AML1-mediated transcription of the B cell-specific blk gene. J Biol Chem. 279:19512–19522. 2004. View Article : Google Scholar : PubMed/NCBI | |
D'Alonzo RC, Selvamurugan N, Karsenty G and Partridge NC: Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem. 277:816–822. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pelletier N, Champagne N, Stifani S and Yang XJ: MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene. 21:2729–2740. 2002. View Article : Google Scholar : PubMed/NCBI | |
Levanon D, Glusman G, Bangsow T, Ben-Asher E, Male DA, Avidan N, Bangsow C, Hattori M, Taylor TD, Taudien S, et al: Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene. 262:23–33. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aho TL, Sandholm J, Peltola KJ, Ito Y and Koskinen PJ: Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC Cell Biol. 7:212006. View Article : Google Scholar : PubMed/NCBI | |
Kim HR, Oh BC, Choi JK and Bae SC: Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. J Cell Biochem. 105:1048–1058. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blyth K, Terry A, Mackay N, Vaillant F, Bell M, Cameron ER, Neil JC and Stewart M: Runx2: A novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene. 20:295–302. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, et al: The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol. 16:3967–3979. 1996. View Article : Google Scholar : PubMed/NCBI | |
Imai Y, Kurokawa M, Yamaguchi Y, Izutsu K, Nitta E, Mitani K, Satake M, Noda T, Ito Y and Hirai H: The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Mol Cell Biol. 24:1033–1043. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wee HJ, Voon DC, Bae SC and Ito Y: PEBP2-beta/CBF-beta dependent phosphorylation of RUNX1 and p300 by HIPK2: Implications for leukemogenesis. Blood. 112:3777–3787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aikawa Y, Nguyen LA, Isono K, Takakura N, Tagata Y, Schmitz ML, Koseki H and Kitabayashi I: Roles of HIPK1 and HIPK2 in AML1-and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 25:3955–3965. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seo W, Tanaka H, Miyamoto C, Levanon D, Groner Y and Taniuchi I: Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development. Immunol Cell Biol. 90:827–830. 2012. View Article : Google Scholar : PubMed/NCBI | |
Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, Yoshida M, Stein GS and Li X: Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol. 22:7982–7992. 2002. View Article : Google Scholar : PubMed/NCBI | |
Durst KL and Hiebert SW: Role of RUNX family members in transcriptional repression and gene silencing. Oncogene. 23:4220–4224. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kasahara K, Shiina M, Fukuda I, Ogata K and Nakamura H: Molecular mechanisms of cooperative binding of transcription factors Runx1-CBFβ-Ets1 on the TCRα gene enhancer. PLoS One. 12:e01726542017. View Article : Google Scholar : PubMed/NCBI | |
Hassig CA, Fleischer TC, Billin AN, Schreiber SL and Ayer DE: Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 89:341–347. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG and Lazar MA: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 18:7185–7191. 1998. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T and Ito Y: Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 20:723–733. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zelent A, Greaves M and Enver T: Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 23:4275–4283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bakshi R, Hassan MQ, Pratap J, Lian JB, Montecino MA, van Wijnen AJ, Stein JL, Imbalzano AN and Stein GS: The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J Cell Physiol. 225:569–576. 2010. View Article : Google Scholar : PubMed/NCBI | |
Henriquez B, Hepp M, Merino P, Sepulveda H, van Wijnen AJ, Lian JB, Stein GS, Stein JL and Montecino M: C/EBPβ binds the P1 promoter of the Runx2 gene and up-regulates Runx2 transcription in osteoblastic cells. J Cell Physiol. 226:3043–3052. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Bruijn M and Dzierzak E: Runx transcription factors in the development and function of the definitive hematopoietic system. Blood. 129:2061–2069. 2017. View Article : Google Scholar : PubMed/NCBI | |
Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S, Ogawa M, Bae SC, et al: Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci. 5:946–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Senzaki K, Ozaki S, Yoshikawa M, Ito Y and Shiga T: Runx3 is required for the specification of TrkC-expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci. 43:296–307. 2010. View Article : Google Scholar : PubMed/NCBI | |
Woolf E, Brenner O, Goldenberg D, Levanon D and Groner Y: Runx3 regulates dendritic epidermal T cell development. Dev Biol. 303:703–714. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kamikubo Y: Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci. 109:2358–2363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ross K, Sedello AK, Todd GP, Paszkowski-Rogacz M, Bird AW, Ding L, Grinenko T, Behrens K, Hubner N, Mann M, et al: Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood. 119:4152–4161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S, Nishikawa S, Okada H, Satake M, et al: Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells. 6:13–23. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Tanaka T, Ogawa S, Kurokawa M, Mitani K, Yazaki Y and Hirai H: Increased expression of AML1 during retinoic-acid-induced differentiation of U937 cells. Biochem Biophys Res Commun. 211:1023–1030. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, et al: Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63:5357–5362. 2003.PubMed/NCBI | |
Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS and van Wijnen AJ: The bone-specific expression of Runx2 oscillates during the cell cycle to support a G 1-related Antiproliferative function in osteoblasts. J Biol Chem. 280:20274–20285. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stein GS, Lian JB, Van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY and Pockwinse SM: Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 23:4315–4329. 2004. View Article : Google Scholar : PubMed/NCBI | |
Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA and Smithies O: Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA. 95:15677–15682. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ehrhardt GR, Hijikata A, Kitamura H, Ohara O, Wang JY and Cooper MD: Discriminating gene expression profiles of memory B cell subpopulations. J Exp Med. 205:1807–1817. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vaillant F, Blyth K, Andrew L, Neil JC and Cameron ER: Enforced expression of Runx2 perturbs T cell development at a stage coincident with beta-selection. J Immunol. 169:2866–2874. 2002. View Article : Google Scholar : PubMed/NCBI | |
Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, Ito Y and Littman DR: Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 111:621–633. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bauer O, Sharir A, Kimura A, Hantisteanu S, Takeda S and Groner Y: Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol Cell Biol. 35:1097–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P and Neil JC: UKPMC funders group gene array analysis reveals a common Runx transcriptional program controlling cell adhesion and survival. Oncogene. 27:5856–5866. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zaidi SK, Pande S, Pratap J, Gaur T, Grigoriu S, Ali SA, Stein JL, Lian JB, van Wijnen AJ and Stein GS: Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential. Proc Natl Acad Sci USA. 104:19861–19866. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ghali O, Chauveau C, Hardouin P, Broux O and Devedjian JC: TNF-alpha's effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression. J Bone Miner Res. 25:1616–1626. 2010. View Article : Google Scholar : PubMed/NCBI | |
Scheitz CJ, Lee TS, McDermitt DJ and Tumbar T: Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J. 31:4124–4139. 2012. View Article : Google Scholar : PubMed/NCBI | |
Speck NA and Gilliland DG: Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2:502–513. 2002. View Article : Google Scholar : PubMed/NCBI | |
Look AT: Oncogenic transcription factors in the human acute leukemias. Science. 278:1059–1064. 1997. View Article : Google Scholar : PubMed/NCBI | |
Regha K, Assi SA, Tsoulaki O, Gilmour J, Lacaud G and Bonifer C: Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nat Commun. 6:72032015. View Article : Google Scholar : PubMed/NCBI | |
Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD and Gilliland DG: Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 92:4917–4921. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nucifora G and Rowley JD: AMLl and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood. 86:1–14. 1995.PubMed/NCBI | |
Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M and Hirai H: Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13:504–510. 1994. View Article : Google Scholar : PubMed/NCBI | |
Krygier A, Szmajda D, Żebrowska M, Jeleń A and Balcerczak E: Expression levels of the runt-related transcription factor 1 and 3 genes in the development of acute myeloid leukemia. Oncol Lett. 15:6733–6738. 2018.PubMed/NCBI | |
Wotton S, Stewart M, Blyth K, Vaillant F, Kilbey A, Neil JC and Cameron ER: Proviral insertion indicates a dominant oncogenic role for Runx1/AML-1 in T-cell lymphoma. Cancer Res. 62:7181–7185. 2002.PubMed/NCBI | |
Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T, Suzushima H, Takatsuki K, Kanno T, Shigesada K and Ito Y: Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood. 93:1817–1824. 1999.PubMed/NCBI | |
Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 23:166–175. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fonatsch C: The role of chromosome 21 in hematology and oncology. Genes Chromosomes Cancer. 49:497–508. 2010.PubMed/NCBI | |
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, et al: Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 486:405–409. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, et al: Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 486:353–360. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, et al: Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest. 127:2815–2828. 2017. View Article : Google Scholar : PubMed/NCBI | |
Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, Schmidt C, Wang L, Pulikkan JA, Zong H, et al: Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers. EBioMedicine. 8:117–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG and Fiumara F: Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet. 23:3402–3420. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stewart M, Terry A, Hu M, O'Hara M, Blyth K, Baxter E, Cameron E, Onions DE and Neil JC: Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): Evidence for a new myc collaborating oncogene. Proc Natl Acad Sci USA. 94:8646–8651. 1997. View Article : Google Scholar : PubMed/NCBI | |
Martin JW, Zielenska M, Stein GS, Van Wijnen AJ and Squire JA: The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011:2827452011. View Article : Google Scholar : PubMed/NCBI | |
Li N, Luo D, Hu X, Luo W, Lei G, Wang Q, Zhu T, Gu J, Lu Y and Zheng Q: RUNX2 and Osteosarcoma. Anticancer Agents Med Chem. 15:881–887. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL and Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25:589–600. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rucci N and Teti A: Osteomimicry: How tumor cells try to deceive the bone. Front Biosci (Schol Ed). 2:907–915. 2010.PubMed/NCBI | |
Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, Yamane T and Katoh R: Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 92:1181–1190. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lim M, Zhong C, Yang S, Bell AM, Cohen MB and Roy-Burman P: Runx2 regulates survivin expression in prostate cancer cells. Lab Invest. 90:222–233. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS and Lian JB: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 25:8581–8591. 2005. View Article : Google Scholar : PubMed/NCBI | |
Onodera Y, Miki Y, Suzuki T, Takagi K, Akahira J, Sakyu T, Watanabe M, Inoue S, Ishida T, Ohuchi N and Sasano H: Runx2 in human breast carcinoma: Its potential roles in cancer progression. Cancer Sci. 101:2670–2675. 2010. View Article : Google Scholar : PubMed/NCBI | |
Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD Jr and Passaniti A: Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res. 27:913–925. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim MS, Gernapudi R, Choi EY, Lapidus RG and Passaniti A: Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget. 8:70916–70940. 2017.PubMed/NCBI | |
Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS and Pratap J: Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer. 11:272012. View Article : Google Scholar : PubMed/NCBI | |
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J and Groner Y: Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta. 1855:131–143. 2015.PubMed/NCBI | |
Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, Huang C, Shah N, Inoue M, Rajnakova A, et al: RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65:7743–7750. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goh YM, Cinghu S, Hong ET, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, et al: Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem. 285:10122–10129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, et al: RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 66:6512–6520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen LF: Tumor suppressor function of RUNX3 in breast cancer. J Cell Biochem. 113:1470–1477. 2012.PubMed/NCBI | |
Li QL, Ito K, Sakakura C, Fukamachi H, Inoue KI, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, et al: Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 109:113–124. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fujii S, Ito K, Ito Y and Ochiai A: Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 283:17324–17332. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsang YH Lamb A and Chen LF: New insights into the inactivation of gastric tumor suppressor RUNX3: The role of H. pylori infection. J Cell Biochem. 112:381–386. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katayama Y, Takahashi M and Kuwayama H: Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun. 388:496–500. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yong WP; National University Hospital, Singapore, : The effect of preoperative docetaxel, cisplatin and capecitabine on serum RUNX3 hypermethylation status in patients with gastric and lower oesophagus adenocarcinoma. Clin Trials. 12017. | |
Hor YT, Voon DC, Koo JK, Wang H, Lau WM, Ashktorab H, Chan SL and Ito Y: A role for RUNX3 in inflammation-induced expression of IL23A in gastric epithelial cells. Cell Rep. 8:50–58. 2014. View Article : Google Scholar : PubMed/NCBI | |
National Institutes of Health: GDC data portal: TCGA-HNSC project. US Dep Heal Hum Serv|Natl Institutes Heal. 12018. | |
Bae SC, Kolinjivadi AM and Ito Y: Functional relationship between p53 and RUNX proteins. J Mol Cell Biol. Dec 11–2018.(Epub ahead of print). doi: 10.1093/jmcb/mjy076. PubMed/NCBI | |
Lee JW, van Wijnen A and Bae SC: RUNX3 and p53: How two tumor suppressors cooperate against oncogenic ras? Adv Exp Med Biol. 962:321–332. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saha A and Robertson ES: Epstein-barr virus-associated B-cell lymphomas: Pathogenesis and clinical outcomes. Clin Cancer Res. 17:3056–3063. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gunnell A, Webb HM, Wood CD, McClellan MJ, Wichaidit B, Kempkes B, Jenner RG, Osborne C, Farrell PJ and West MJ: RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth. Nucleic Acids Res. 44:4636–4650. 2016. View Article : Google Scholar : PubMed/NCBI | |
Spender LC, Cornish GH, Sullivan A and Farrell PJ: Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) Is Induced by Epstein-Barr Virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol. 76:4919–4927. 2002. View Article : Google Scholar : PubMed/NCBI | |
Levanon D, Bernstein Y, Negreanu V, Bone KR, Pozner A, Eilam R, Lotem J, Brenner O and Groner Y: Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol Med. 3:593–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lotem J, Levanon D, Negreanu V and Groner Y: The false paradigm of RUNX3 function as tumor suppressor in gastric cancer. J Cancer Ther. 4:16–25. 2013. View Article : Google Scholar | |
Levanon D, Negreanu V, Lotem J, Bone KR, Brenner O, Leshkowitz D and Groner Y: Transcription Factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol Cell Biol. 34:1158–1169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Whittle MC, Izeradjene K, Rani PG, Feng L, Carlson MA, DelGiorno KE, Wood LD, Goggins M, Hruban RH, Chang AE, et al: RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell. 161:1345–1360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Whittle MC and Hingorani SR: RUNX3 defines disease behavior in pancreatic ductal adenocarcinoma. Mol Cell Oncol. 3:e10765882015. View Article : Google Scholar : PubMed/NCBI | |
Jian Z, Cheng T, Zhang Z, Raulefs S, Shi K, Steiger K, Maeritz N, Kleigrewe K, Hofmann T, Benitz S, et al: Glycemic variability promotes both local invasion and metastatic colonization by pancreatic ductal adenocarcinoma. Cell Mol Gastroenterol Hepatol. 6:429–449. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J and Groner Y: Runx3 in immunity, inflammation and cancer. Adv Exp Med Biol. 962:369–393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Berger AH, Knudson AG and Pandolfi PP: A continuum model for tumour suppression. Nature. 476:163–169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H, Abiko Y and Takata T: RUNX3 has an oncogenic role in head and neck cancer. PLoS One. 4:e58922009. View Article : Google Scholar : PubMed/NCBI | |
Manandhar S and Lee YM: Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep. 51:174–181. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pattabiraman DR and Weinberg RA: Tackling the cancer stem cells-what challenges do they pose? Nat Rev Drug Discov. 13:497–512. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gopal S, Saraswati S, Sanyal M, Bulbule A, Ramdasi A, Kumar D, Behera R, Ahmed M, Chakraborty G, Kumar V, et al: Therapeutic targeting of osteopontin in breast cancer cells. In: Breast cancer-current and alternative therapeutic modalities. InTech. 23–36. 2011. | |
Osorio KM, Lilja KC and Tumbar T: Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. J Cell Biol. 193:235–250. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fortini ME: Notch Signaling: The core pathway and its posttranslational regulation. Dev Cell. 16:633–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y and Wu K: Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. J Hematol Oncol. 7:872014. View Article : Google Scholar : PubMed/NCBI | |
Thouverey C and Caverzasio J: Focus on the p38 MAPK signaling pathway in bone development and maintenance. Bonekey Rep. 4:7112015. View Article : Google Scholar : PubMed/NCBI | |
Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S and Reith E: Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res. 44 (Suppl 1):S109–S116. 2003. View Article : Google Scholar | |
Nikitovic D, Kavasi RM, Berdiaki A, Papachristou DJ, Tsiaoussis J, Spandidos DA, Tsatsakis AM and Tzanakakis GN: Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep. 36:1787–1792. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cohen-Solal KA, Boregowda RK and Lasfar A: RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer. 14:1372015. View Article : Google Scholar : PubMed/NCBI | |
Petcherski AG and Kimble J: Mastermind is a putative activator for Notch. Curr Biol. 10:R471–R473. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa M, Ichikawa M, Kumano K, Goyama S, Kawazu M, Asai T, Ogawa S, Kurokawa M and Chiba S: AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood. 108:3329–3334. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burns CE, Traver D, Mayhall E, Shepard JL and Zon LI: Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 19:2331–2342. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meier-Stiegen F, Schwanbeck R, Bernoth K, Martini S, Hieronymus T, Ruau D, Zenke M and Just U: Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors. PLoS One. 5:e114812010. View Article : Google Scholar : PubMed/NCBI | |
Ann EJ, Kim HY, Choi YH, Kim MY, Mo JS, Jung J, Yoon JH, Kim SM, Moon JS, Seo MS, et al: Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation. J Bone Miner Res. 26:317–330. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen Q and Christakos S: The vitamin D receptor, Runx2, and the notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J Biol Chem. 280:40589–40598. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fu YX, Chang AC, Fournier M, Chang L, Niessen K and Karsan A: RUNX3 maintains the mesenchymal phenotype after termination of the notch signal. J Biol Chem. 286:11803–11813. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cadigan KM and Peifer M: Wnt signaling from development to disease: Insights from model systems. Cold Spring Harb Perspect Biol. 1:a0028812009. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Liu X, Bai J, Pei D and Zheng J: The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep. 35:1227–1236. 2016. View Article : Google Scholar : PubMed/NCBI | |
Medina MA, Ugarte GD, Vargas MF, Avila ME, Necuñir D, Elorza AA, Gutiérrez SE and De Ferrari GV: Alternative RUNX1 promoter regulation by Wnt/β-catenin signaling in leukemia cells and human hematopoietic progenitors. J Cell Physiol. 231:1460–1467. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moore A, Tahinci E, Lee E and Hiebert S: RUNX1-ETO stimulates wnt signaling by inhibiting the function of ETO family member proteins. Blood. 104:25542004. | |
Dong YF, Soung do Y, Schwarz EM, O'Keefe RJ and Drissi H: Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol. 208:77–86. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI | |
Attisano L and Labbé E: TGFbeta and Wnt pathway cross-talk. Cancer Metastasis Rev. 23:53–61. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ju X, Ishikawa TO, Naka K, Ito K, Ito Y and Oshima M: Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells. Cancer Sci. 105:418–424. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chimge NO and Frenkel B: The RUNX family in breast cancer: Relationships with estrogen signaling. Oncogene. 32:2121–2130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mitsuda Y, Morita K, Kashiwazaki G, Taniguchi J, Bando T, Obara M, Hirata M, Kataoka TR, Muto M, Kaneda Y, et al: RUNX1 positively regulates ErbB2/HER2 signaling pathway through modulating the expression of SOS1 in gastric cancer cells. Sci Rep. 8:64232018. View Article : Google Scholar : PubMed/NCBI | |
Khalid O, Baniwal SK, Purcell DJ, Leclerc N, Gabet Y, Stallcup MR, Coetzee GA and Frenkel B: Modulation of Runx2 activity by estrogen receptor-alpha: Implications for osteoporosis and breast cancer. Endocrinology. 149:5984–5995. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D, Borok Z and Frenkel B: Regulation of breast cancer metastasis by Runx2 and estrogen signaling: The role of SNAI2. Breast Cancer Res. 13:R1272011. View Article : Google Scholar : PubMed/NCBI | |
Teplyuk NM, Galindo M, Teplyuk VI, Pratap J, Young DW, Lapointe D, Javed A, Stein JL, Lian JB, Stein GS and van Wijnen AJ: Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem. 283:27585–27597. 2008. View Article : Google Scholar : PubMed/NCBI | |
Berry NB, Fan M and Nephew KP: Estrogen Receptor-alpha Hinge-Region Lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol. 22:1535–1551. 2008. View Article : Google Scholar : PubMed/NCBI | |
Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, Peng J, Cheng X and Vertino PM: Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell. 30:336–347. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Park A and Nephew KP: CHIP (Carboxyl Terminus of Hsc70-Interacting Protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol. 19:2901–2914. 2005. View Article : Google Scholar : PubMed/NCBI | |
Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H and Cavaillès V: Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res. 67:5513–5521. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Qu Z, Ong CW, Tsang YH, Xiao G, Shapiro D, Salto-Tellez M, Ito K, Ito Y and Chen LF: RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α. Oncogene. 31:527–534. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K, Ida H, Bouillet P, Strasser A, Bae SC and Ito Y: The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol. 26:4474–4488. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krishnan V, Chong YL, Tan TZ, Kulkarni M, Bin Rahmat MB, Tay LS, Sankar H, Jokhun DS, Ganesan A, Chuang LSH, et al: TGFβ promotes genomic instability after loss of RUNX3. Cancer Res. 78:88–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL, Kim HR, Cha EJ, Lee YH, Kaneda A, et al: RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol. 25:8097–8107. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon DC, Koo JK, Wang H, et al: RUNX3 Attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell. 14:226–237. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Shiraha H, Nakanishi Y, Nishina S, Matsubara M, Horiguchi S, Takaoka N, Iwamuro M, Kataoka J, Kuwaki K, et al: Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Cancer. 131:2537–2546. 2012. View Article : Google Scholar : PubMed/NCBI | |
Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS, Ito K, Fukamachi H, Chan SL, Thiery JP and Ito Y: Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells. 30:2088–2099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, Kim MK, Kim DM, Choi BS, Kim EG, et al: Runx3 Inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 24:603–616. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kilbey A, Blyth K, Wotton S, Terry A, Jenkins A, Bell M, Hanlon L, Cameron ER and Neil JC: Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res. 67:11263–11271. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cameron ER, Blyth K, Hanlon L, Kilbey A, Mackay N, Stewart M, Terry A, Vaillant F, Wotton S and Neil JC: The Runx genes as dominant oncogenes. Blood Cells Mol Dis. 30:194–200. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aronson BD, Fisher AL, Blechman K, Caudy M and Gergen JP: Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol. 17:5581–5587. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fukushima-Nakase Y, Naoe Y, Taniuchi I, Hosoi H, Sugimoto T and Okuda T: Shared and distinct roles mediated through C-terminal subdomains of acute myeloid leukemia/runt-related transcription factor molecules in murine development. Blood. 105:4298–4307. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goyama S, Yamaguchi Y, Imai Y, Kawazu M, Nakagawa M, Asai T, Kumano K, Mitani K, Ogawa S, Chiba S, et al: The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region. Blood. 104:3558–3564. 2004. View Article : Google Scholar : PubMed/NCBI | |
Javed A, Barnes GL, Jasanya BO, Stein JL, Gerstenfeld L, Lian JB and Stein GS: Runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: Evidence for promoter context-dependent activity of Cbfa proteins. Mol Cell Biol. 21:2891–2905. 2001. View Article : Google Scholar : PubMed/NCBI | |
Neil JC, Gilroy K, Borlan G, Hay J, Terry A and Kilbey A: The RUNX genes as conditional oncogenes: Insights from retroviral targeting and mouse models. Adv Exp Med Biol. 962:247–264. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miething C, Grundler R, Mugler C, Brero S, Hoepfl J, Geigl J, Speicher MR, Ottmann O, Peschel C and Duyster J: Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc Natl Acad Sci USA. 104:4594–4599. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burillo-Sanz S, Vargas MT, Morales-Camacho RM, Caballero-Velázquez T, Sánchez J, García-Lozano JR, Pérez de Soto I, Prats-Martín C, Bernal R and Pérez-Simón JA: RUNX1 amplification in AML with myelodysplasia-related changes and ring 21 chromosomes. Hematol Oncol. 35:894–899. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ito Y: Oncogenic potential of the RUNX gene family: ‘Overview.’. Oncogene. 23:4198–4208. 2004. View Article : Google Scholar : PubMed/NCBI |