1
|
Esteller M: Epigenetic changes in cancer.
F1000 Biol Rep. 3:92011. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ying SY, Chang CP and Lin SL:
Intron-mediated RNA interference, intronic microRNAs, and
applications. Methods Mol Biol. 629:205–237. 2010.PubMed/NCBI
|
4
|
Moutinho C and Esteller M: MicroRNAs and
epigenetics. Adv Cancer Res. 135:189–220. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Suzuki HI, Young RA and Sharp PA:
Super-enhancer-mediated RNA processing revealed by integrative
MicroRNA network analysis. Cell. 168:1000–1014.e15. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hochberg J, Waxman IM, Kelly KM, Morris E
and Cairo MS: Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma:
State of the science. Br J Haematol. 144:24–40. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Brady G, Macarthur GJ and Farrell PJ:
Epstein-Barr virus and Burkitt lymphoma. Postgrad Med J.
84:372–377. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dalla-Favera R, Bregni M, Erikson J,
Patterson D, Gallo RC and Croce CM: Human c-myc onc gene is located
on the region of chromosome 8 that is translocated in Burkitt
lymphoma cells. Proc Natl Acad Sci USA. 79:7824–7827. 1982.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Taub R, Kirsch I, Morton C, Lenoir G, Swan
D, Tronick S, Aaronson S and Leder P: Translocation of the c-myc
gene into the immunoglobulin heavy chain locus in human Burkitt
lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA.
79:7837–7841. 1982. View Article : Google Scholar : PubMed/NCBI
|
11
|
Willis TG and Dyer MJ: The role of
immunoglobulin translocations in the pathogenesis of B-cell
malignancies. Blood. 96:808–822. 2000.PubMed/NCBI
|
12
|
Schmitz R, Young RM, Ceribelli M, Jhavar
S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, et
al: Burkitt lymphoma pathogenesis and therapeutic targets from
structural and functional genomics. Nature. 490:116–120. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Sander S, Calado DP, Srinivasan L, Köchert
K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S,
Siebert R, et al: Synergy between PI3K signaling and MYC in Burkitt
lymphomagenesis. Cancer Cell. 22:167–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA,
Ong'echa JM, Moormann AM and Bailey JA: Integrative microRNA and
mRNA deep-sequencing expression profiling in endemic Burkitt
lymphoma. BMC Cancer. 17:7612017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lenze D, Leoncini L, Hummel M, Volinia S,
Liu CG, Amato T, De Falco G, Githanga J, Horn H, Nyagol J, et al:
The different epidemiologic subtypes of Burkitt lymphoma share a
homogenous micro RNA profile distinct from diffuse large B-cell
lymphoma. Leukemia. 25:1869–1876. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hezaveh K, Kloetgen A, Bernhart SH,
Mahapatra KD, Lenze D, Richter J, Haake A, Bergmann AK, Brors B,
Burkhardt B, et al: Alterations of microRNA and microRNA-regulated
messenger RNA expression in germinal center B-cell lymphomas
determined by integrative sequencing analysis. Haematologica.
101:1380–1389. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu K, Liu L, Zhang J, Wang Y, Liang H,
Fan G, Jiang Z, Zhang CY, Chen X and Zhou G: miR-29b suppresses the
proliferation and migration of osteosarcoma cells by targeting
CDK6. Protein Cell. 7:434–444. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kwon JJ, Factora TD, Dey S and Kota J: A
systematic review of miR-29 in cancer. Mol Ther Oncolytics.
12:173–194. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Garzon R, Heaphy CE, Havelange V, Fabbri
M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA,
et al: MicroRNA 29b functions in acute myeloid leukemia. Blood.
114:5331–5341. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang X, Zhao X, Fiskus W, Lin J, Lwin T,
Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, et al: Coordinated
silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic
target of histone modification in aggressive B-Cell lymphomas.
Cancer Cell. 22:506–523. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mazzoccoli L, Robaina MC, Apa AG, Bonamino
M, Pinto LW, Queiroga E, Bacchi CE and Klumb CE: miR-29 silencing
modulates the expression of target genes related to proliferation,
apoptosis and methylation in Burkitt lymphoma cells. J Cancer Res
Clin Oncol. 144:483–497. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Campo E, Swerdlow SH, Harris NL, Pileri S,
Stein H and Jaffe ES: The 2008 WHO classification of lymphoid
neoplasms and beyond: Evolving concepts and practical applications.
Blood. 117:5019–5032. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis
FR, Apa AG, de Rezende LM and Klumb CE: Deregulation of DNMT1,
DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution
for disease pathogenesis. Exp Mol Pathol. 98:200–207. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Guan H, Xie L, Klapproth K, Weitzer CD,
Wirth T and Ushmorov A: Decitabine represses translocated MYC
oncogene in Burkitt lymphoma. J Pathol. 229:775–783. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shinozaki-Ushiku A, Kunita A, Isogai M,
Hibiya T, Ushiku T, Takada K and Fukayama M: Profiling of
virus-encoded MicroRNAs in Epstein-Barr Virus-associated gastric
carcinoma and their roles in gastric carcinogenesis. J Virol.
89:5581–5591. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Iizasa H, Wulff BE, Alla NR, Maragkakis M,
Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L,
et al: Editing of Epstein-Barr virus-encoded BART6 microRNAs
controls their dicer targeting and consequently affects viral
latency. J Biol Chem. 285:33358–33370. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Malumbres M: miRNAs and cancer: An
epigenetics view. Mol Aspects Med. 34:863–874. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fabbri M, Ivan M, Cimmino A, Negrini M and
Calin GA: Regulatory mechanisms of microRNAs involvement in cancer.
Expert Opin Biol Ther. 7:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao JJ, Lin J, Lwin T, Yang H, Guo J,
Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al:
microRNA expression profile and identification of miR-29 as a
prognostic marker and pathogenetic factor by targeting CDK6 in
mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kinoshita T, Nohata N, Hanazawa T, Kikkawa
N, Yamamoto N, Yoshino H, Itesako T, Enokida H, Nakagawa M, Okamoto
Y and Seki N: Tumour-suppressive microRNA-29s inhibit cancer cell
migration and invasion by targeting laminin-integrin signalling in
head and neck squamous cell carcinoma. Br J Cancer. 109:2636–2645.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nishikawa R, Chiyomaru T, Enokida H,
Inoguchi S, Ishihara T, Matsushita R, Goto Y, Fukumoto I, Nakagawa
M and Seki N: Tumour-suppressive microRNA-29s directly regulate
LOXL2 expression and inhibit cancer cell migration and invasion in
renal cell carcinoma. FEBS Lett. 589:2136–2145. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chang TC, Yu D, Lee YS, Wentzel EA, Arking
DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT:
Widespread microRNA repression by Myc contributes to tumorigenesis.
Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sears RC: The life cycle of C-myc: From
synthesis to degradation. Cell Cycle. 3:1133–1137. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Majello B and Perini G: Myc proteins in
cell biology and pathology. Biochim Biophys Acta. 1849:467–468.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F,
Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, et al: Global
mapping of c-Myc binding sites and target gene networks in human B
cells. Proc Natl Acad Sci USA. 103:17834–17839. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Meyer N and Penn LZ: Reflecting on 25
years with MYC. Nat Rev Cancer. 8:976–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim JW, Mori S and Nevins JR: Myc-induced
microRNAs integrate Myc-mediated cell proliferation and cell fate.
Cancer Res. 70:4820–4828. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tao J, Zhao X and Tao J: c-MYC-miRNA
circuitry: A central regulator of aggressive B-cell malignancies.
Cell Cycle. 13:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Baer C, Claus R and Plass C: Genome-wide
epigenetic regulation of miRNAs in cancer. Cancer Res. 73:473–477.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Strmsek Z and Kunej T: MicroRNA silencing
by DNA methylation in human cancer: A literature analysis.
Noncoding RNA. 1:44–52. 2015.PubMed/NCBI
|
42
|
Lopez-Serra P and Esteller M: DNA
methylation-associated silencing of tumor-suppressor microRNAs in
cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lujambio A and Esteller M: CpG island
hypermethylation of tumor suppressor microRNAs in human cancer.
Cell Cycle. 6:1455–1459. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Saito Y and Jones PA: Epigenetic
activation of tumor suppressor microRNAs in human cancer cells.
Cell Cycle. 5:2220–2222. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tost J and Gut IG: DNA methylation
analysis by pyrosequencing. Nat Protoc. 2:2265–2275. 2007.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Colella S, Shen L, Baggerly KA, Issa JP
and Krahe R: Sensitive and quantitative universal Pyrosequencing
methylation analysis of CpG sites. Biotechniques. 35:146–150. 2003.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Perino M and Veenstra GJ: Chromatin
control of developmental dynamics and plasticity. Dev Cell.
38:610–620. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Whyte WA, Orlando DA, Hnisz D, Abraham BJ,
Lin CY, Kagey MH, Rahl PB, Lee TI and Young RA: Master
transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell. 153:307–319. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Elghoroury EA, ElDine HG, Kamel SA,
Abdelrahman AH, Mohammed A, Kamel MM and Ibrahim MH: Evaluation of
miRNA-21 and miRNA let-7 as prognostic markers in patients with
breast cancer. Clin Breast Cancer. 18:e721–e726. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Karpinski P, Pesz K and Sasiadek MM:
Pan-cancer analysis reveals presence of pronounced DNA methylation
drift in CpG island methylator phenotype clusters. Epigenomics.
9:1341–1352. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
El Baroudi M, Corà D, Bosia C, Osella M
and Caselle M: A curated database of miRNA mediated feed-forward
loops involving MYC as master regulator. PLoS One. 6:e147422011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Sabò A, Kress TR, Pelizzola M, De Pretis
S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A, et
al: Selective transcriptional regulation by Myc in cellular growth
control and lymphomagenesis. Nature. 511:488–492. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Poole CJ, Zheng W, Lodh A, Yevtodiyenko A,
Liefwalker D, Li H, Felsher DW and van Riggelen J: DNMT3B
overexpression contributes to aberrant DNA methylation and
MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma.
Oncotarget. 8:76898–76920. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Godshalk SE, Bhaduri-McIntosh S and Slack
FJ: Epstein-Barr virus-mediated dysregulation of human microRNA
expression. Cell Cycle. 7:3595–3600. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Paschos K, Smith P, Anderton E, Middeldorp
JM, White RE and Allday MJ: Epstein-barr virus latency in B cells
leads to epigenetic repression and CpG methylation of the tumour
suppressor gene Bim. PLoS Pathog. 5:e10004922009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Price AM and Luftig MA: To be or not IIb:
A multi-step process for Epstein-Barr virus latency establishment
and consequences for B cell tumorigenesis. PLoS Pathog.
11:e10046562015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Klinke O, Feederle R and Delecluse HJ:
Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol.
26:52–59. 2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Vereide DT, Seto E, Chiu YF, Hayes M,
Tagawa T, Grundhoff A, Hammerschmidt W and Sugden B: Epstein-Barr
virus maintains lymphomas via its miRNAs. Oncogene. 33:1258–1264.
2014. View Article : Google Scholar : PubMed/NCBI
|