The impact of the bone marrow microenvironment on multiple myeloma (Review)
- Authors:
- Jianhao Hou
- Rongfang Wei
- Jinjun Qian
- Ronggen Wang
- Zhimin Fan
- Chunyan Gu
- Ye Yang
-
Affiliations: National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China - Published online on: August 5, 2019 https://doi.org/10.3892/or.2019.7261
- Pages: 1272-1282
This article is mentioned in:
Abstract
Rajkumar SV: Myeloma today: Disease definitions and treatment advances. Am J Hematol. 91:90–100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, Dispenzieri A, Kumar S, Clark RJ, Baris D, et al: Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood. 113:5412–5417. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, Kröger N, Einsele H, Vesole DH, Dimopoulos M, et al: Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 24:1121–1127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, et al: Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502:637–643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manier S, Sacco A, Leleu X, Ghobrial IM and Roccaro AM: Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI | |
Crisan M and Dzierzak E: The many faces of hematopoietic stem cell heterogeneity. Development. 143:4571–4581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pang WW, Schrier SL and Weissman IL: Age-associated changes in human hematopoietic stem cells. Semin Hematol. 54:39–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, et al: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 121:1298–1312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Corcoran KE, Patel N and Rameshwar P: Stromal derived growth factor-1alpha: Another mediator in neural-emerging immune system through Tac1 expression in bone marrow stromal cells. J Immunol. 178:2075–2082. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and Taichman RS: GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 12:116–127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD and Cher ML: CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12. Prostate. 66:32–48. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, Anderson KC and Ghobrial IM: Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 263:160–172. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D, Nico B and Vacca A: Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 25:4257–4266. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for therapy. Blood. 120:20–30. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anderson KC and Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol. 6:249–274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abdi J, Chen G and Chang H: Drug resistance in multiple myeloma: Latest findings and new concepts on molecular mechanisms. Oncotarget. 4:2186–2207. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bianchi G and Munshi NC: Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 125:3049–3058. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D, Moschetta M and Vacca A: Microenvironment and multiple myeloma spread. Thromb Res. 133 (Suppl 2):S102–S106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lemaire M, Deleu S, De Bruyne E, Van Valckenborgh E, Menu E and Vanderkerken K: The microenvironment and molecular biology of the multiple myeloma tumor. Adv Cancer Res. 110:19–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhou X, Huang D, Ji Y and Kang F: IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem. 41:1360–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Chauhan D, Schlossman R, Richardson P and Anderson KC: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: Therapeutic applications. Oncogene. 20:4519–4527. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken K and Menu E: Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR and Rajkumar SV: Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant. 34:235–239. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, et al: Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia. 30:1103–1115. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vacca A and Ribatti D: Angiogenesis and vasculogenesis in multiple myeloma: Role of inflammatory cells. Recent Results Cancer Res. 183:87–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol. 64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ria R, Reale A, De Luisi A, Ferrucci A, Moschetta M and Vacca A: Bone marrow angiogenesis and progression in multiple myeloma. Am J Blood Res. 1:76–89. 2011.PubMed/NCBI | |
Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F and Dammacco F: A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica. 88:176–185. 2003.PubMed/NCBI | |
Menu E, Kooijman R, Van Valckenborgh E, Asosingh K, Bakkus M, Van Camp B and Vanderkerken K: Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: Study in the 5T33MM model. Br J Cancer. 90:1076–1083. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Abe M, Hiasa M, Oda A, Amou H, Nakano A, Takeuchi K, Kitazoe K, Kido S, Inoue D, et al: Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: A role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res. 13:816–823. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC and Roodman GD: Osteoclasts are important for bone angiogenesis. Blood. 115:140–149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Mitsiades C, Tonon G, Richardson PG and Anderson KC: Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 7:585–598. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, et al: Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 66:184–191. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bonewald LF: The amazing osteocyte. J Bone Miner Res. 26:229–238. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P and Alexandre C: Mechanisms of bone destruction in multiple myeloma: The importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 7:1909–1914. 1989. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Calle J, Bellido T and Roodman GD: Role of osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat Care. 8:407–413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ and Abildgaard N: Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: Only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma. 55:911–919. 2014. View Article : Google Scholar : PubMed/NCBI | |
Walker RE, Lawson MA, Buckle CH, Snowden JA and Chantry AD: Myeloma bone disease: Pathogenesis, current treatments and future targets. Br Med Bull. 111:117–138. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A, et al: Increased osteocyte death in multiple myeloma patients: Role in myeloma-induced osteoclast formation. Leukemia. 26:1391–1401. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD and Giuliani N: IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood. 106:1407–1414. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD and Choi SJ: IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 103:2308–2315. 2004. View Article : Google Scholar : PubMed/NCBI | |
Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, et al: Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: A vicious cycle between bone destruction and myeloma expansion. Blood. 104:2484–2491. 2004. View Article : Google Scholar : PubMed/NCBI | |
Croucher PI, McDonald MM and Martin TJ: Bone metastasis: The importance of the neighbourhood. Nat Rev Cancer. 16:373–386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich LA and Roodman GD: The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev. 208:252–266. 2005. View Article : Google Scholar : PubMed/NCBI | |
Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, et al: Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 273:14363–14367. 1998. View Article : Google Scholar : PubMed/NCBI | |
Heath DJ, Vanderkerken K, Cheng X, Gallagher O, Prideaux M, Murali R and Croucher PI: An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res. 67:202–208. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, et al: Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 6:89832015. View Article : Google Scholar : PubMed/NCBI | |
McDonald MM, Fairfield H, Falank C and Reagan MR: Adipose, bone, and myeloma: Contributions from the microenvironment. Calcif Tissue Int. 100:433–448. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu R, Liu H, Zhao S, Wang Y, Li L, Gao S, Ruan E, Wang G, Wang H, Song J and Shao Z: Osteoblast inhibition by chemokine cytokine ligand3 in myeloma-induced bone disease. Cancer Cell Int. 14:1322014. View Article : Google Scholar : PubMed/NCBI | |
Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M and Terpos E: Dickkopf-1: A suitable target for the management of myeloma bone disease. Expert Opin Ther Targets. 13:839–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moester MJ, Papapoulos SE, Löwik CW and van Bezooijen RL: Sclerostin: Current knowledge and future perspectives. Calcif Tissue Int. 87:99–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Meng S, Song H and Claret FX: Dickkopf-1 is a key regulator of myeloma bone disease: Opportunities and challenges for therapeutic intervention. Blood Rev. 27:261–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, et al: Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood. 106:3160–3165. 2005. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin LI, Roodman GD and Bellido T: Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 76:1089–1100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reagan MR, Liaw L, Rosen CJ and Ghobrial IM: Dynamic interplay between bone and multiple myeloma: Emerging roles of the osteoblast. Bone. 75:161–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G and Epstein J: Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 91:192–199. 2006.PubMed/NCBI | |
Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC and Anderson KC: The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 21:1007–1034, vii-viii. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shipman CM and Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63:912–916. 2003.PubMed/NCBI | |
Scheller J and Rose-John S: Interleukin-6 and its receptor: From bench to bedside. Med Microbiol Immunol. 195:173–183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Suchi K, Fujiwara H, Okamura S, Okamura H, Umehara S, Todo M, Furutani A, Yoneda M, Shiozaki A, Kubota T, et al: Overexpression of Interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res. 31:67–75. 2011.PubMed/NCBI | |
Hong DS, Angelo LS and Kurzrock R: Interleukin-6 and its receptor in cancer: Implications for translational therapeutics. Cancer. 110:1911–1928. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, et al: Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 332:83–85. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rosean TR, Tompkins VS, Olivier AK, Sompallae R, Norian LA, Morse HC III, Waldschmidt TJ and Janz S: The tumor microenvironment is the main source of IL-6 for plasma cell tumor development in mice. Leukemia. 29:233–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matthes T, Manfroi B, Zeller A, Dunand-Sauthier I, Bogen B and Huard B: Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia. 29:1882–1890. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F and Janz S: Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 59:188–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Tian S, Wang J, Ma H, Qian K and Zhang X: Co-expression of CD40/CD40L on XG1 multiple myeloma cells promotes IL-6 autocrine function. Cancer Invest. 33:6–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Westendorf JJ, Ahmann GJ, Armitage RJ, Spriggs MK, Lust JA, Greipp PR, Katzmann JA and Jelinek DF: CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. J Immunol. 152:117–128. 1994.PubMed/NCBI | |
Dinarello CA: Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–3732. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tu Y, Gardner A and Lichtenstein A: The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: Roles in cytokine-dependent survival and proliferative responses. Cancer Res. 60:6763–6770. 2000.PubMed/NCBI | |
Hideshima T, Nakamura N, Chauhan D and Anderson KC: Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 20:5991–6000. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hsu JH, Shi Y, Hu L, Fisher M, Franke TF and Lichtenstein A: Role of the AKT kinase in expansion of multiple myeloma clones: Effects on cytokine-dependent proliferative and survival responses. Oncogene. 21:1391–1400. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sansone P and Bromberg J: Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 30:1005–1014. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matthes T, Manfroi B and Huard B: Revisiting IL-6 antagonism in multiple myeloma. Crit Rev Oncol Hematol. 105:1–4. 2016. View Article : Google Scholar : PubMed/NCBI | |
Monaghan KA, Khong T, Burns CJ and Spencer A: The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia. 25:1891–1899. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW and Anderson KC: Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood. 89:227–234. 1997.PubMed/NCBI | |
Burger R: Impact of interleukin-6 in hematological malignancies. Transfus Med Hemother. 40:336–343. 2013. View Article : Google Scholar : PubMed/NCBI | |
Orlowski RZ, Gercheva L, Williams C, Sutherland H, Robak T, Masszi T, Goranova-Marinova V, Dimopoulos MA, Cavenagh JD, Špička I, et al: A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am J Hematol. 90:42–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
San-Miguel J, Bladé J, Shpilberg O, Grosicki S, Maloisel F, Min CK, Polo Zarzuela M, Robak T, Prasad SV, Tee Goh Y, et al: Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood. 123:4136–4142. 2014. View Article : Google Scholar : PubMed/NCBI | |
Voorhees PM, Manges RF, Sonneveld P, Jagannath S, Somlo G, Krishnan A, Lentzsch S, Frank RC, Zweegman S, Wijermans PW, et al: A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br J Haematol. 161:357–366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo DJ, Han JS, Li YS, Liu ZS, Lu SY and Ren HL: In vitro and in vivo antitumor effects of the recombinant immunotoxin IL6(T23)-PE38KDEL in multiple myeloma. Oncol Lett. 4:311–318. 2012. View Article : Google Scholar : PubMed/NCBI | |
Younes A, Romaguera J, Fanale M, McLaughlin P, Hagemeister F, Copeland A, Neelapu S, Kwak L, Shah J, de Castro Faria S, et al: Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: Evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 30:4161–4167. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Bates TM, Bernstein SH and Phipps RP: Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin Cancer Res. 14:6414–6425. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sprynski AC, Hose D, Caillot L, Réme T, Shaughnessy JD Jr, Barlogie B, Seckinger A, Moreaux J, Hundemer M, Jourdan M, et al: The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood. 113:4614–4626. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, et al: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 5:221–230. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bieghs L, Lub S, Fostier K, Maes K, Van Valckenborgh E, Menu E, Johnsen HE, Overgaard MT, Larsson O, Axelson M, et al: The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget. 5:11193–11208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuhn DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, Davis RE, Lin P, Wang H, Madden TL, Wei C, et al: Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood. 120:3260–3270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bieghs L, Brohus M, Kristensen IB, Abildgaard N, Bøgsted M, Johnsen HE, Conover CA, De Bruyne E, Vanderkerken K, Overgaard MT and Nyegaard M: Abnormal IGF-binding protein profile in the bone marrow of multiple myeloma patients. PLoS One. 11:e01542562016. View Article : Google Scholar : PubMed/NCBI | |
Jelinek DF, Witzig TE and Arendt BK: A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol. 159:487–496. 1997.PubMed/NCBI | |
Georgii-Hemming P, Wiklund HJ, Ljunggren O and Nilsson K: Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood. 88:2250–2258. 1996.PubMed/NCBI | |
Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, et al: Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: Therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica. 95:415–423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chiron D, Maiga S, Surget S, Descamps G, Gomez-Bougie P, Traore S, Robillard N, Moreau P, Le Gouill S, Bataille R, et al: Autocrine insulin-like growth factor 1 and stem cell factor but not interleukin 6 support self-renewal of human myeloma cells. Blood Cancer J. 3:e1202013. View Article : Google Scholar : PubMed/NCBI | |
Huang EW, Xue SJ, Li XY, Xu SW, Cheng JD, Zheng JX, Shi H, Lv GL, Li ZG, Li Y, et al: EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion. Biochem Biophys Res Commun. 447:271–277. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vishwamitra D, George SK, Shi P, Kaseb AO and Amin HM: Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 8:1814–1844. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge NL and Rudikoff S: Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 96:2856–2861. 2000.PubMed/NCBI | |
Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K and De Bruyne E: The insulin-like growth factor system in multiple myeloma: Diagnostic and therapeutic potential. Oncotarget. 7:48732–48752. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vanderkerken K, Asosingh K, Braet F, Van Riet I and Van Camp B: Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood. 93:235–241. 1999.PubMed/NCBI | |
Asosingh K, Günthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I, Van Camp B and Vanderkerken K: In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res. 60:3096–3104. 2000.PubMed/NCBI | |
Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP and Anderson KC: Blockade of mitogen-activated protein kinase cascade signaling in interleukin 6-independent multiple myeloma cells. Clin Cancer Res. 3:1017–1022. 1997.PubMed/NCBI | |
Podar K and Anderson KC: The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood. 105:1383–1395. 2005. View Article : Google Scholar : PubMed/NCBI | |
Andersen NF, Vogel U, Klausen TW, Gimsing P, Gregersen H, Abildgaard N and Vangsted AJ: Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. Int J Cancer. 131:E636–E642. 2012. View Article : Google Scholar : PubMed/NCBI | |
Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Asosingh K, De Raeve H, Menu E, Van Riet I, Van Marck E, Van Camp B and Vanderkerken K: Angiogenic switch during 5T2MM murine myeloma tumorigenesis: Role of CD45 heterogeneity. Blood. 103:3131–3137. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bhutani M, Turkbey B, Tan E, Kemp TJ, Pinto LA, Berg AR, Korde N, Minter AR, Weiss BM, Mena E, et al: Bone marrow angiogenesis in myeloma and its precursor disease: A prospective clinical trial. Leukemia. 28:413–416. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, et al: Induction of angiogenesis by normal and malignant plasma cells. Blood. 114:128–143. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taylor RM, Kashima TG, Knowles HJ and Athanasou NA: VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: Implications for giant cell tumour pathobiology. Lab Invest. 92:1398–1406. 2012. View Article : Google Scholar : PubMed/NCBI | |
Terpos E, Christoulas D, Gavriatopoulou M and Dimopoulos MA: Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl). 26:2017. View Article : Google Scholar : PubMed/NCBI | |
Neviani P and Fabbri M: Exosomic microRNAs in the tumor microenvironment. Front Med (Lausanne). 2:472015.PubMed/NCBI | |
Wang X, Lu H, Li T, Yu L, Liu G, Peng X and Zhao J: Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res. 3:356–373. 2013.PubMed/NCBI | |
Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G and Alessandro R: Exosomes as intercellular signaling organelles involved in health and disease: Basic science and clinical applications. Int J Mol Sci. 14:5338–5366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raimondo S, Corrado C, Raimondi L, De Leo G and Alessandro R: Role of extracellular vesicles in hematological malignancies. Biomed Res Int. 2015:8216132015. View Article : Google Scholar : PubMed/NCBI | |
Zijlstra A and Di Vizio D: Size matters in nanoscale communication. Nat Cell Biol. 20:228–230. 2018. View Article : Google Scholar : PubMed/NCBI | |
Amodio N, Di Martino MT, Neri A, Tagliaferri P and Tassone P: Non-coding RNA: A novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 13 (Suppl 1):S125–S137. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohtsuka M, Ling H, Doki Y, Mori M and Calin GA: MicroRNA processing and human cancer. J Clin Med. 4:1651–1667. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Veirman K, Wang J, Xu S, Leleu X, Himpe E, Maes K, De Bruyne E, Van Valckenborgh E, Vanderkerken K, Menu E and Van Riet I: Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett. 377:17–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR and Wajapeyee N: miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife. 3:e014602014. View Article : Google Scholar : PubMed/NCBI | |
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, et al: Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 6:13772–13789. 2015. View Article : Google Scholar : PubMed/NCBI | |
Raimondo S, Saieva L, Vicario E, Pucci M, Toscani D, Manno M, Raccosta S, Giuliani N and Alessandro R: Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol. 12:22019. View Article : Google Scholar : PubMed/NCBI | |
Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, Heusschen R, De Raeve H, Schots R, Vanderkerken K, et al: Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 8:1052018. View Article : Google Scholar : PubMed/NCBI | |
Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M and Pals ST: The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia. 27:1729–1737. 2013. View Article : Google Scholar : PubMed/NCBI | |
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lai RC, Chen TS and Lim SK: Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G and Benigni A: Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22:772–780. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Yin X, Sun K, Feng S, Liu J, Chen D, Guo C and Wu Z: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release. 261:113–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Becker PS, Gooley TA, Green DJ, Burwick N, Kim TY, Kojouri K, Inoue Y, Moore DJ, Nelli E, Dennie T and Bensinger WI: A phase 2 study of bortezomib, cyclophosphamide, pegylated liposomal doxorubicin and dexamethasone for newly diagnosed multiple myeloma. Blood Cancer J. 6:e4222016. View Article : Google Scholar : PubMed/NCBI | |
Umezu T, Imanishi S, Azuma K, Kobayashi C, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv. 1:812–823. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi NC, Mitsiades N and Anderson KC: Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 101:1530–1534. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA and Anderson KC: Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 111:1654–1664. 2008. View Article : Google Scholar : PubMed/NCBI |