Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next‑generation sequencing
- Authors:
- Heming Wu
- Qiuming Wang
- Hua Zhong
- Liang Li
- Qunji Zhang
- Qingyan Huang
- Zhikang Yu
-
Affiliations: Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China, Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China - Published online on: November 6, 2019 https://doi.org/10.3892/or.2019.7401
- Pages: 240-250
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI | |
DeSantis C, Ma J, Bryan L and Jemal A: Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Unger-Saldaña K: Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Onco. 5:465–477. 2014. View Article : Google Scholar | |
Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, Chen WQ, Shao ZM and Goss PE: Breast cancer in China. Lancet Oncol. 15:e279–e289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wiechmann L, Sampson M, Stempel M, Jacks LM, Patil SM, King T and Morrow M: Presenting features of breast cancer differ by molecular subtype. Ann Surg Oncol. 16:2705–2710. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parise CA, Bauer KR, Brown MM and Caggiano V: Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 2004. Breast J. 15:593–602. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, et al: Breast cancer subtypes and response to docetaxel in node-positive breast cancer: Use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 27:1168–1178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park S, Koo JS, Min SK, Park HS, Lee JS, Lee JS, Kim SI and Park BW: Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast. 21:50–57. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meyers MO, Klauber-Demore N, Ollila DW, Amos KD, Moore DT, Drobish AA, Burrows EM, Dees EC and Carey LA: Impact of breast cancer molecular subtypes on locoregional recurrence in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol. 18:2851–2857. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003. View Article : Google Scholar : PubMed/NCBI | |
Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM, Dunn S, Huntsman DG and Nakshatri H: FOXA1 expression in breast cancer-correlation with luminal subtype A and survival. Clin Cancer Res. 13:4415–4421. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang LC, Jin X, Yang HY, He M, Chang H, Shao ZM and Di GH: Luminal B subtype: A key factor for the worse prognosis of young breast cancer patients in China. BMC Cancer. 15:2012015. View Article : Google Scholar : PubMed/NCBI | |
Böcker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, Bürger H, Wai D, Ina Diallo R, Brandt B, et al: Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: A new cell biological concept. Lab Invest. 82:737–746. 2002. View Article : Google Scholar : PubMed/NCBI | |
Birnbaum D, Bertucci F, Ginestier C, Tagett R, Jacquemier J and Charafe-Jauffret E: Basal and luminal breast cancers: Basic or luminous. Int J Oncol. 25:249–258. 2004.PubMed/NCBI | |
Turner NC, Reisfilho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A and Tutt AN: BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 26:2126–2132. 2007. View Article : Google Scholar : PubMed/NCBI | |
Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, et al: Epidemiology of basal-like breast cancer. Breast Cancer Res Treat. 109:123–139. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thike AA, Cheok PY, Jaralazaro AR, Tan B, Tan P and Tan PH: Triple-negative breast cancer: Clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol. 23:123–133. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rakha E, Ellis I and Reis-Filho J: Are triple-negative and basal-like breast cancer synonymous? Clin Cancer Res. 14:618–619. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chacón RD and Costanzo MV: Triple-negative breast cancer. Breast Cancer Res. 12 (Suppl 2):S32010. View Article : Google Scholar | |
Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HW, Luts J, Monleon D, et al: Triple-negative breast cancer: Present challenges and new perspectives. Mol Oncol. 4:209–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oakman C, Moretti E, Galardi F, Biagioni C, Santarpia L, Biganzoli L and Di Leo A: Adjuvant systemic treatment for individual patients with triple negative breast cancer. Breast. 20 (Suppl 3):S135–S141. 2011. View Article : Google Scholar : PubMed/NCBI | |
André F and Zielinski CC: Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol. 23 (Suppl 6):vi46–vi51. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, et al: Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 111:148882014. View Article : Google Scholar : PubMed/NCBI | |
Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, et al: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 7:297–303. 2001. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Mitchell JP, Court J, Mason MD and Tabi Z: Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67:7458–7466. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Mitchell JP, Court J, Linnane S, Mason MD and Tabi Z: Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 180:72492008. View Article : Google Scholar : PubMed/NCBI | |
Hannafon BN and Ding WQ: Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 14:14240–14269. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chaput N, Taïeb J, Schartz NE, André F, Angevin E and Zitvogel L: Exosome-based immunotherapy. Cancer Immunol Immun. 53:234–239. 2004. View Article : Google Scholar | |
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K and Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hagiwara K, Kosaka N, Yoshioka Y, Takahashi RU, Takeshita F and Ochiya T: Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep. 2:3142012. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Jiang C, Shi X, Yu H, Lin H and Peng Y: Diagnostic value of circulating miR-155, miR-21, and miR-10b as promising biomarkers in human breast cancer. Int J Clin Exp Med. 9:10258–10265. 2016. | |
Shan HC and Toyokuni S: Malignant mesothelioma as an oxidative stress-induced cancer: An update. Free Radical Bio Med. 86:166–178. 2015. View Article : Google Scholar | |
Wang W and Luo YP: MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J Zhejiang Univer B. 16:18–31. 2015. View Article : Google Scholar | |
Li X, Xin S, He Z, Che X, Wang J, Xiao X, Chen J and Song X: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol Biochem. 33:1631–1642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Corcoran C, Friel AM, Duffy MJ, Crown J and O'Driscoll L: Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 57:18–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yong L, Jing Z, Zhang PY, Zhang Y, Sun SY, Yu SY and Xi QS: MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit. 18:BR299–BR308. 2012.PubMed/NCBI | |
Guttilla IK and White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, Ye F, Song C, Xie X and Wei W: miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett. 356:410–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Eades G, Yang M, Yao Y, Zhang Y and Zhou Q: miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 286:40725–40733. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Hu C, Xu Q, Chen L, Ma K, Xu N and Zhu H: Methylseleninic acid activates Keap1/Nrf2 pathway via up-regulating miR-200a in human oesophageal squamous cell carcinoma cells. Bioscience Rep. 35:e002562015. View Article : Google Scholar | |
Tao S, He H, Chen Q and Yue W: GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. Biochem Biophys Res Commun. 451:74–78. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tao S, He H and Chen Q: Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer. J Transl Med. 13:1312015. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhang Y, Jasper J, Lykken E, Alexander PB, Markowitz GJ, McDonnell DP, Li QJ and Wang XF: miR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget. 7:20381–20394. 2016.PubMed/NCBI | |
Müller V, Gade S, Steinbach B, Loibl S, von Minckwitz G, Untch M, Schwedler K, Lübbe K, Schem C, Fasching PA, et al: Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: A translational research project within the Geparquinto trial. Breast Cancer Res Treat. 147:61–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Yang J, Han Y, Lu Q, Cao J and Syed L: High expression of miR-210 predicts poor survival in patients with breast cancer: A meta-analysis. Gene. 507:135–138. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yin JY, Deng ZQ, Liu FQ, Qian J, Lin J, Tang Q, Wen XM, Zhou JD, Zhang YY and Zhu XW: Association between mir-24 and mir-378 in formalin-fixed paraffin-embedded tissues of breast cancer. Int J Clin Exp Patho. 7:4261–4267. 2014. | |
Ikeda K, Horieinoue K, Ueno T, Suzuki T, Sato W, Shigekawa T, Osaki A, Saeki T, Berezikov E, Mano H and Inoue S: miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep. 5:131702015. View Article : Google Scholar : PubMed/NCBI | |
Savi F, Forno I, Faversani A, Luciani A, Caldiera S, Gatti S, Foa P, Ricca D, Bulfamante G, Vaira V and Bosari S: miR-296/Scribble axis is deregulated in human breast cancer and miR-296 restoration reduces tumour growth in vivo. Clin Sci (Lond). 127:233–242. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Yu J, Wang L, Ding D, Zhang L, Chu C, Chen Q, Xu Z, Zou Q and Liu X: miR-320a is an independent prognostic biomarker for invasive breast cancer. Oncol Lett. 8:1043–1050. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Wang JG, Zhang L, Yang HP, Wang L, Ding D, Chen Q, Yang WL, Ren KH, Zhou DM, et al: MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin. Oncotarget. 7:38612–38625. 2016.PubMed/NCBI | |
Li L, Yuan L, Luo J, Gao J, Guo J and Xie X: miR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med. 13:109–117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chabre O, Libé R, Assie G, Barreau O, Bertherat J, Bertagna X, Feige JJ and Cherradi N: Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer. 20:579–594. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J and Litman T: Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol. 37:215–227. 2014. View Article : Google Scholar | |
Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, Zhang Y, Lai P, Fan X, Zhou X, et al: miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 74:3031–3042. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu D, Li W, Wu X, Gao CE and Li X: Identification of featured biomarkers in breast cancer with microRNA microarray. Arch Gynecol Obstet. 294:1047–1053. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jia Z, Liu Y, Gao Q, Han Y, Zhang G, Xu S, Cheng K and Zou W: miR-490-3p inhibits the growth and invasiveness in triple-negative breast cancer by repressing the expression of TNKS2. Gene. 593:41–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Uen YH, Wang JW, Wang CC, Jhang Y, Chung JY, Tseng T, Sheu M and Lee S: Mining of potential microRNAs with clinical correlation-regulation of syndecan-1 expression by miR-122-5p altered mobility of breast cancer cells and possible correlation with liver injury. Oncotarget. 9:28165–28175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Block I, Burton M, Sørensen KP, Andersen L, Larsen MJ, Bak M, Cold S, Thomassen M, Tan Q and Kruse TA: Association of miR-548c-5p, miR-7-5p, miR-210-3p, miR-128-3p with recurrence in systemically untreated breast cancer. Oncotarget. 9:9030–9042. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Yang Z, Wang H, Cao Z, Zhao Y, Gong C, Ma L, Wang X, Hu X and Chen S: MicroRNA-320a inhibits proliferation and invasion of breast cancer cells by targeting RAB11A. Am J Cancer Res. 5:2719–2729. 2015.PubMed/NCBI | |
Frères P, Bouznad N, Servais L, Josse C, Wenric S, Poncin A, Thiry J, Moonen M, Oury C, Lancellotti P, et al: Variations of circulating cardiac biomarkers during and after anthracycline-containing chemotherapy in breast cancer patients. BMC Cancer. 18:1022018. View Article : Google Scholar : PubMed/NCBI | |
Hamdi K, Goerlitz D, Stambouli N, Islam M, Baroudi O, Neili B, Benayed F, Chivi S, Loffredo C, Jillson IA, et al: miRNAs in Sera of Tunisian patients discriminate between inflammatory breast cancer and non-inflammatory breast cancer. SpringerPlus. 3:6362014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cai Q, Bao PP, Su Y, Cai H, Wu J, Ye F, Guo X, Zheng W, Zheng Y and Shu XO: Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. Breast Cancer Res Treat. 152:183–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fassan M, Baffa R, Palazzo JP, Lloyd J, Crosariol M, Liu CG, Volinia S, Alder H, Rugge M, Croce CM and Rosenberg A: MicroRNA expression profiling of male breast cancer. Breast Cancer Res. 11:R582009. View Article : Google Scholar : PubMed/NCBI | |
Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, Brown M, Hafner M, Reyal F, van Kouwenhove M, et al: MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 71:4443–4453. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, Chang G, Li X, Li Q, Wang S and Wang W: MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One. 9:e962282014. View Article : Google Scholar : PubMed/NCBI | |
Cao ZG, Huang YN, Yao L, Liu YR, Hu X, Hou YF and Shao ZM: Positive expression of miR-361-5p indicates better prognosis for breast cancer patients. J Thorac Dis. 8:1772–1779. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han J, Yu J, Dai Y, Li J, Guo M, Song J and Zhou X: Overexpression of miR-361-5p in triple-negative breast cancer (TNBC) inhibits migration and invasion by targeting RQCD1 and inhibiting the EGFR/PI3K/Akt pathway. Bosn J Basic Med Sci. 19:52–59. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, Lin WC, Shen CY, Huang CS, Hsieh FJ, et al: Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 14:362015. View Article : Google Scholar : PubMed/NCBI | |
McFall T, Mcknight B, Rosati R, Kim S, Huang Y, Viola-Villegas N and Ratnam M: Progesterone receptor A promotes invasiveness and metastasis of luminal breast cancer by suppressing regulation of critical microRNAs by estrogen. J Biol Chem. 293:1163–1177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Benvenuti S, Sartorebianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S and Bardelli A: Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 67:2643–2648. 2007. View Article : Google Scholar : PubMed/NCBI | |
Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Guertin DA and Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zoncu R, Efeyan A and Sabatini DM: mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, et al: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 491:399–405. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kidd PM: The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev. 5:4–27. 2000.PubMed/NCBI | |
Iozzo RV and Sanderson RD: Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med. 15:1013–1031. 2011. View Article : Google Scholar : PubMed/NCBI | |
Van Brocklyn JR: Sphingolipid signaling pathways as potential therapeutic targets in gliomas. Mini Rev Med Chem. 7:984–990. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yuan HD, Quan HY, Zhang Y, Kim SH and Chung SH: 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep. 3:825–831. 2010.PubMed/NCBI | |
Green AS, Chapuis N, Lacombe C, Mayeux P, Bouscary D and Tamburini J: LKB1/AMPK/mTOR signaling pathway in hematological malignancies: From metabolism to cancer cell biology. Cell Cycle. 10:2115–2120. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dentice M, Luongo C, Ambrosio R, Sibilio A, Casillo A, Iaccarino A, Troncone G, Fenzi G, Larsen PR and Salvatore D: β-catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterol. 143:1037–1047. 2012. View Article : Google Scholar | |
King CR, Kraus MH and Aaronson SA: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 229:974–976. 1985. View Article : Google Scholar : PubMed/NCBI | |
Normanno N, De Luca A, Maiello MR, Campiglio M, Napolitano M, Mancino M, Carotenuto A, Viglietto G and Menard S: The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol. 207:420–427. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oxnard GR, Arcila ME, Sima CS, Riely GJ, Chmielecki J, Kris MG, Pao W, Ladanyi M and Miller V: Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR mutant lung cancer: Distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res. 17:1616–1622. 2011. View Article : Google Scholar : PubMed/NCBI |