1
|
Shtivelman E, Lifshitz B, Gale RP and
Canaani E: Fused transcript of abl and bcr genes in chronic
myelogenous leukaemia. Nature. 315:550–554. 1985. View Article : Google Scholar : PubMed/NCBI
|
2
|
Druker BJ: Translation of the philadelphia
chromosome into therapy for CML. Blood. 112:4808–4817. 2008.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chopade P and Akard LP: Improving outcomes
in chronic myeloid leukemia over time in the era of tyrosine kinase
inhibitors. Clin Lymphoma Myeloma Leuk. 18:710–723. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jabbour E, Kantarjian H and Cortes J: Use
of second- and third-generation tyrosine kinase inhibitors in the
treatment of chronic myeloid leukemia: An evolving treatment
paradigm. Clin Lymphoma Myeloma Leuk. 15:323–334. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sawyers CL, Hochhaus A, Feldman E, Goldman
JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F,
Deininger MW, et al: Imatinib induces hematologic and cytogenetic
responses in patients with chronic myelogenous leukemia in myeloid
blast crisis: Results of a phase II study. Blood. 99:3530–3539.
2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Larson RA: Is there a best TKI for chronic
phase CML? Blood. 126:2370–2375. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Warmuth M, Bergmann M, Priess A, Hauslmann
K, Emmerich B and Hallek M: The Src family kinase Hck interacts
with Bcr-Abl by a kinase-independent mechanism and phosphorylates
the Grb2-binding site of Bcr. J Biol Chem. 272:33260–33270. 1997.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wertheim JA, Forsythe K, Druker BJ, Hammer
D, Boettiger D and Pear WS: BCR-ABL-induced adhesion defects are
tyrosine kinase-independent. Blood. 99:4122–4130. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Inoue A, Kobayashi CI, Shinohara H,
Miyamoto K, Yamauchi N, Yuda J, Akao Y and Minami Y: Chronic
myeloid leukemia stem cells and molecular target therapies for
overcoming resistance and disease persistence. Int J Hematol.
108:365–370. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goussetis DJ, Gounaris E, Wu EJ, Vakana E,
Sharma B, Bogyo M, Altman JK and Platanias LC: Autophagic
degradation of the BCR-ABL oncoprotein and generation of
antileukemic responses by arsenic trioxide. Blood. 120:3555–3562.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Valencia-Serna J, Aliabadi HM, Manfrin A,
Mohseni M, Jiang X and Uludag H: SiRNA/lipopolymer nanoparticles to
arrest growth of chronic myeloid leukemia cells in vitro and in
vivo. Eur J Pharm Biopham. 130:66–70. 2018. View Article : Google Scholar
|
12
|
Davidson BL and McCray PB Jr: Current
prospects for RNA interference-based therapies. Nat Rev Genet.
12:329–340. 2011. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Kim DH and Rossi JJ: Strategies for
silencing human disease using RNA interference. Nat Rev Genet.
8:173–184. 2007. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Shibata N, Shimokawa K, Nagai K, Ohoka N,
Hattori T, Miyamoto N, Ujikawa O, Sameshima T, Nara H, Cho N and
Naito M: Pharmacological difference between degrader and inhibitor
against oncogenic BCR-ABL kinase. Sci Rep. 8:135492018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu S and Wang J: Homoharringtonine and
omacetaxine for myeloid hematological malignancies. J Hematol
Oncol. 7:22014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Quintas-Cardama A and Cortes J:
Therapeutic options against BCR-ABL1 T315I-positive chronic
myelogenous leukemia. Clin Cancer Res. 14:4392–4399. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
O'Brien S, Kantarjian H, Keating M, Beran
M, Koller C, Robertson LE, Hester J, Rios MB, Andreeff M and Talpaz
M: Homoharringtonine therapy induces responses in patients with
chronic myelogenous leukemia in late chronic phase. Blood.
86:3322–3326. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kantarjian HM, O'Brien S and Cortes J:
Homoharringtonine/omacetaxine mepesuccinate: The long and winding
road to food and drug administration approval. Clin Lymphhoma
Myeloma Leuk. 13:530–533. 2013. View Article : Google Scholar
|
19
|
Al Ustwani O, Griffiths EA, Wang ES and
Wetzler M: Omacetaxine mepesuccinate in chronic myeloid leukemia.
Exp Opin Pharmacother. 15:2397–2405. 2014. View Article : Google Scholar
|
20
|
Gurel G, Blaha G, Moore PB and Steitz TA:
U2504 determines the species specificity of the A-site cleft
antibiotics: The structures of tiamulin, homoharringtonine, and
bruceantin bound to the ribosome. J Mol Biol. 389:146–156. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang MT: Harringtonine, an inhibitor of
initiation of protein biosynthesis. Mol Pharm. 11:511–519.
1975.
|
22
|
Kuroda J, Kamitsuji Y, Kimura S, Ashihara
E, Kawata E, Nakagawa Y, Takeuichi M, Murotani Y, Yokota A, Tanaka
R, et al: Anti-myeloma effect of homoharringtonine with concomitant
targeting of the myeloma-promoting molecules, Mcl-1, XIAP, and
beta-catenin. Int J Hematol. 87:507–515. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun Q, Li S, Li J, Fu Q, Wang Z, Li B, Liu
SS, Su Z, Song J and Lu D: Homoharringtonine regulates the
alternative splicing of Bcl-x and caspase 9 through a protein
phosphatase 1-dependent mechanism. BMC Complement Altern Med.
18:1642018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen J, Mu Q, Li X, Yin X, Yu M, Jin J, Li
C, Zhou Y, Zhou J, Suo S, et al: Homoharringtonine targets Smad3
and TGF-β pathway to inhibit the proliferation of acute myeloid
leukemia cells. Oncotarget. 8:40318–40326. 2017.PubMed/NCBI
|
25
|
Chen R, Gandhi V and Plunkett W: A
sequential blockade strategy for the design of combination
therapies to overcome oncogene addiction in chronic myelogenous
leukemia. Cancer Res. 66:10959–10966. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Novotny L, Al-Tannak NF and Hunakova L:
Protein synthesis inhibitors of natural origin for CML therapy:
Semisynthetic homoharringtonine (Omacetaxine mepesuccinate).
Neoplasma. 63:495–503. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zaffagnini G, Savova A, Danieli A, Romanov
J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R,
Tarafder AK, et al: P62 filaments capture and present ubiquitinated
cargos for autophagy. EMBO J. 37:e983082018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rossari F, Minutolo F and Orciuolo E:
Past, present, and future of Bcr-Abl inhibitors: From chemical
development to clinical efficacy. J Hematol Oncol. 11:842018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Talati C and Pinilla-Ibarz J: Resistance
in chronic myeloid leukemia: Definitions and novel therapeutic
agents. Curr Opin Hematol. 25:154–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dikic I: Proteasomal and autophagic
degradation systems. Ann Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kraft C, Peter M and Hofmann K: Selective
autophagy: Ubiquitin-mediated recognition and beyond. Nat Cell
Biol. 12:836–841. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lamark T, Svenning S and Johansen T:
Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays
Biochem. 61:609–624. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moscat J, Karin M and Diaz-Meco MT: P62 in
Cancer: Signaling adaptor beyond autophagy. Cell. 167:606–609.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kocaturk NM and Gozuacik D: Crosstalk
between mammalian autophagy and the ubiquitin-proteasome system.
Front Cell Dev Biol. 6:1282018. View Article : Google Scholar : PubMed/NCBI
|