1
|
Dorfman HD and Czerniak B: Bone cancers.
Cancer. 75:203–210. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Whelan JS: Osteosarcoma. Eur J Cancer.
33:1611–1618. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kaste SC, Pratt CB, Cain AM, Jones-Wallace
DJ and Rao BN: Metastases detected at the time of diagnosis of
primary pediatric extremity osteosarcoma at diagnosis: Imaging
features. Cancer. 86:1602–1608. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mialou V, Philip T, Kalifa C, Perol D,
Gentet JC, Marec-Berard P, Pacquement H, Chastagner P, Defaschelles
AS and Hartmann O: Metastatic osteosarcoma at diagnosis: Prognostic
factors and long-term outcome-the french pediatric experience.
Cancer. 104:1100–1109. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Berner K, Johannesen TB, Berner A,
Haugland HK, Bjerkehagen B, Bohler PJ and Bruland OS: Time-trends
on incidence and survival in a nationwide and unselected cohort of
patients with skeletal osteosarcoma. Acta Oncol. 54:25–33. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mirabello L, Troisi RJ and Savage SA:
Osteosarcoma incidence and survival rates from 1973 to 2004: Data
from the surveillance, epidemiology, and end results program.
Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Geller DS and Gorlick R: Osteosarcoma: A
review of diagnosis, management, and treatment strategies. Clin Adv
Hematol Oncol. 8:705–718. 2010.PubMed/NCBI
|
8
|
Lindsey BA, Markel JE and Kleinerman ES:
Osteosarcoma overview. Rheumatol Ther. 4:25–43. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Morrow JJ and Khanna C: Osteosarcoma
genetics and epigenetics: Emerging biology and candidate therapies.
Crit Rev Oncog. 20:173–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Martin GS: Cell signaling and cancer.
Cancer Cell. 4:167–174. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stepulak A, Luksch H, Gebhardt C,
Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke
KS, Turski L and Ikonomidou C: Expression of glutamate receptor
subunits in human cancers. Histochem Cell Biol. 132:435–445. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Stepulak A, Rola R, Polberg K and
Ikonomidou C: Glutamate and its receptors in cancer. J Neural
Transm (Vienna). 121:933–944. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Koochekpour S: Glutamate, a metabolic
biomarker of aggressiveness and a potential therapeutic target for
prostate cancer. Asian J Androl. 15:212–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pollock PM, Cohen-Solal K, Sood R,
Namkoong J, Martino JJ, Koganti A, Zhu H, Robbins C, Makalowska I,
Shin SS, et al: Melanoma mouse model implicates metabotropic
glutamate signaling in melanocytic neoplasia. Nat Genet.
34:108–112. 2003. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Willard SS and Koochekpour S: Glutamate
signaling in benign and malignant disorders: Current status, future
perspectives, and therapeutic implications. Int J Biol Sci.
9:728–742. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Willard SS and Koochekpour S: Glutamate,
glutamate receptors, and downstream signaling pathways. Int J Biol
Sci. 9:948–959. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu LJ, Wall BA, Wangari-Talbot J and Chen
S: Metabotropic glutamate receptors in cancer. Neuropharmacology.
15:193–202. 2016.
|
18
|
Savage SA, Mirabello L, Wang Z,
Gastier-Foster JM, Gorlick R, Khanna C, Flanagan AM, Tirabosco R,
Andrulis IL, Wunder JS, et al: Genome-Wide association study
identifies two susceptibility loci for osteosarcoma. Nat Genet.
45:799–803. 2013. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Kalariti NP, Lembessis P and Koutsilieris
M: Characterization of the glutametergic system in MG-63
osteoblast-like osteosarcoma cells. Anticancer Res. 24:3923–3929.
2004.PubMed/NCBI
|
20
|
Martin D, Thompson MA and Nadler JV: The
neuroprotective agent riluzole inhibits release of glutamate and
aspartate from slices of hippocampal area CA1. Eur J Pharmacol.
250:473–476. 1993. View Article : Google Scholar : PubMed/NCBI
|
21
|
Doble A: The pharmacology and mechanism of
action of riluzole. Neurology. 47 (Suppl 4):S233–S241. 1996.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hubert JP, Delumeau JC, Glowinski J,
Premont J and Doble A: Antagonism by riluzole of entry of calcium
evoked by NMDA and veratridine in rat cultured granule cells:
Evidence for a dual mechanism of action. Br J Pharmacol.
113:261–267. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jan CR, Lu YC, Jiann BP, Chang HT and
Huang JK: Effect of riluzole on cytosolic Ca2+ increase
in human osteosarcoma cells. Pharmacology. 66:120–127. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu J and Wang LN: The efficacy and safety
of riluzole for neurodegenerative movement disorders: A systematic
review with meta-analysis. Drug Deliv. 25:43–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Speyer CL, Smith JS, Banda M, DeVries JA,
Mekani T and Gorski DH: Metabotropic glutamate receptor-1: A
potential therapeutic target for the treatment of breast cancer.
Breast Cancer Res Treat. 132:565–573. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Akamatsu K, Shibata MA, Ito Y, Sohma Y,
Azuma H and Otsuki Y: Riluzole induces apoptotic cell death in
human prostate cancer cells via endoplasmic reticulum stress.
Anticancer Res. 29:2195–2204. 2009.PubMed/NCBI
|
27
|
Le MN, Chan JL, Rosenberg SA, Nabatian AS,
Merrigan KT, Cohen-Solal KA and Goydos JS: The glutamate release
inhibitor Riluzole decreases migration, invasion, and proliferation
of melanoma cells. J Invest Dermatol. 130:2240–2249. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait
Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy
K, et al: Osteosarcoma cell proliferation and survival requires
mGluR5 receptor activity and is blocked by riluzole. PLoS One.
12:e01712562017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sperling ST, Aung S, Martin V, Rohde V and
Ninkovic M: Riluzole: A potential therapeutic intervention in human
brain tumor stem-like cells. Oncotarget. 8:96697–96709. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yelskaya Z, Carrillo E, Dubisz E, Gulzar
H, Morgan D and Mahajan SS: Synergistic inhibition of survival,
proliferation, and migration of U87 cells with a combination of
LY341495 and iressa. PLoS One. 8:e645882013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang C, Yuan XR, Li HY, Zhao ZJ, Liao YW,
Wang XY, Su J, Sang SS and Liu Q: Anti-cancer effect of
metabotropic glutamate receptor 1 inhibition in human glioma U87
cells: Involvement of PI3K/Akt/mTOR pathway. Cell Physiol Biochem.
35:419–432. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yip D, Le MN, Chan JL, Lee JH, Mehnert JA,
Yudd A, Kempf J, Shih WJ, Chen S and Goydos JS: A phase 0 trial of
riluzole in patients with resectable stage III and IV melanoma.
Clin Cancer Res. 15:3896–3902. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mehnert JM, Silk AW, Wen Y, Lee JH, Dudek
L, Jeong BS, Li J, Schenkel JM, Sadimin E, Kane M, et al: A phase
II trial of riluzole, an antagonist of metabotropic glutamate
receptor 1 (GRM1) signaling, in patients with advanced melanoma.
Pigment Cell Melanoma Res. 31:534–540. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jia SF, Worth LL and Kleinerman ES: A nude
mouse model of human osteosarcoma lung metastases for evaluating
new therapeutic strategies. Clin Exp Metastasis. 17:501–506. 1999.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Caldorera-Moore M, Guimard N, Shi L and
Roy K: Designer nanoparticles: Incorporating size, shape and
triggered release into nanoscale drug carriers. Expert Opin Drug
Deliv. 7:479–495. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tomuleasa C, Braicu C, Irimie A, Craciun L
and Berindan- Neagoe I: Nanopharmacology in translational
hematology and oncology. Int J Nanomedicine. 9:3465–3479.
2014.PubMed/NCBI
|
37
|
Dadwal A, Baldi A and Kumar Narang R:
Nanoparticles as carriers for drug delivery in cancer. Artif Cells
Nanomed Biotechnol. 46:295–305. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sykes EA, Chen J, Zheng G and Chan WC:
Investigating the impact of nanoparticle size on active and passive
tumor targeting efficiency. ACS Nano. 8:5696–5706. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Moghimi SM and Szebeni J: Stealth
liposomes and long circulating nanoparticles: Critical issues in
pharmacokinetics, opsonization and protein-binding properties. Prog
Lipid Res. 42:463–478. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J
and Jia L: Nanotechnology-Based intelligent drug design for cancer
metastasis treatment. Biotechnol Adv. 32:761–777. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim PS, Djazayeri S and Zeineldin R: Novel
nanotechnology approaches to diagnosis and therapy of ovarian
cancer. Gynecol Oncol. 120:393–403. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Champion JA, Katare YK and Mitragotri S:
Particle shape: A new design parameter for micro- and nanoscale
drug delivery carriers. J Control Release. 121:3–9. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Toy R, Peiris PM, Ghaghada KB and
Karathanasis E: Shaping cancer nanomedicine: The effect of particle
shape on the in vivo journey of nanoparticles. Nanomedicine (Lond).
9:121–134. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Truong NP, Whittaker MR, Mak CW and Davis
TP: The importance of nanoparticle shape in cancer drug delivery.
Expert Opin Drug Deliv. 12:129–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Rampersaud S, Fang J, Wei Z, Fabijanic K,
Silver S, Jaikaran T, Ruiz Y, Houssou M, Yin Z, Zheng S, et al: The
effect of cage shape on nanoparticle-based drug carriers:
Anticancer drug release and efficacy via receptor blockade using
dextran-coated iron oxide nanocages. Nano Lett. 16:7357–7363. 2016.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Oh MH, Yu T, Yu SH, Lim B, Ko KT,
Willinger MG, Seo DH, Kim BH, Cho MG, Park JH, et al: Galvanic
replacement reactions in metal oxide nanocrystals. Science.
340:964–968. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu Y, Chen T, Wu C, Qiu L, Hu R, Li J,
Cansiz S, Zhang L, Cui C, Zhu G, et al: Facile surface
functionalization of hydrophobic magnetic nanoparticles. J Am Chem
Soc. 136:12552–12555. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ray P, Wu AM and Gambhir SS: Optical
bioluminescence and positron emission tomography imaging of a novel
fusion reporter gene in tumor xenografts of living mice. Cancer
Res. 63:1160–1165. 2003.PubMed/NCBI
|
49
|
Steckiewicz KP, Barcinska E, Malankowska
A, Zauszkiewicz- Pawlak A, Nowaczyk G, Zaleska-Medynska A and
Inkielewicz-Stepniak I: Impact of gold nanoparticles shape on their
cytotoxicity against human osteoblast and osteosarcoma in in vitro
model. Evaluation of the safety of use and anti-cancer potential. J
Mater Sci Mater Med. 30:222019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Groeneveld GJ, Van Kan HJ, Kalmijn S,
Veldink JH, Guchelaar HJ, Wokke JH and Van den Berg LH: Riluzole
serum concentrations in patients with ALS: Associations with side
effects and symptoms. Neurology. 61:1141–1143. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Groeneveld GJ, van Kan HJ, Lie AHL,
Guchelaar HJ and van den Berg LH: An association study of riluzole
serum concentration and survival and disease progression in
patients with ALS. Clin Pharmacol Ther. 83:718–722. 2008.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Bondi ML, Craparo EF, Giammona G and Drago
F: Brain-targeted solid lipid nanoparticles containing riluzole:
Preparation, characterization and biodistribution. Nanomedicine
(Lond). 5:25–32. 2010. View Article : Google Scholar : PubMed/NCBI
|