1
|
Melim C, Jarak I, Veiga F and Figueiras A:
The potential of micelleplexes as a therapeutic strategy for
osteosarcoma disease. 3 Biotech. 10:1472020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Moore DD and Luu HH: Osteosarcoma. Cancer
Treat Res. 162:65–92. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bishop MW, Janeway KA and Gorlick R:
Future directions in the treatment of osteosarcoma. Curr Opin
Pediatr. 28:26–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fan TM, Roberts RD and Lizardo MM:
understanding and modeling metastasis biology to improve
therapeutic strategies for combating osteosarcoma progression.
Front Oncol. 10:132020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baltazar F, Afonso J, Costa M and Granja
S: Lactate beyond a waste metabolite: Metabolic affairs and
signaling in malignancy. Front Oncol. 10:2312020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liberti MV and Locasale JW: Correction to:
‘The warburg effect: How does it benefit cancer cells?’: [Trends in
Biochemical Sciences, 41 (2016) 211]. Trends Biochem Sci.
41:2872016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schwartz L, Supuran CT and Alfarouk KO:
The warburg effect and the hallmarks of cancer. Anticancer Agents
Med Chem. 17:164–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shen Y, Zhao S, Wang S, Pan X, Zhang Y, Xu
J, Jiang Y, Li H, Zhang Q, Gao J, et al: S1P/S1PR3 axis promotes
aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma.
Ebiomedicine. 40:210–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhao SJ, Shen YF, Li Q, He YJ, Zhang YK,
Hu LP, Jiang YQ, Xu NW, Wang YJ, Li J, et al: SLIT2/ROBO1 axis
contributes to the Warburg effect in osteosarcoma through
activation of SRC/ERK/c-MYC/PFKFB2 pathway. Cell Death Dis.
9:3902018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rajabi M, Ali A, McConnell M and Cabral J:
Keratinous materials: Structures and functions in biomedical
applications. Mater Sci Eng C, Mater Biol Appl. 110:1106122020.
View Article : Google Scholar
|
11
|
Donato RK and Mija A: Keratin associations
with synthetic, biosynthetic and natural polymers: An extensive
review. Polymers (Basel). 12(pii): E322019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yi H, Yoon HN, Kim S and Ku NO: The role
of keratins in the digestive system: Lessons from transgenic mouse
models. Histochem Cell Biol. 150:351–359. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Khanom R, Nguyen CT, Kayamori K, Zhao X,
Morita K, Miki Y, Katsube K, Yamaguchi A and Sakamoto K: Keratin 17
Is induced in oral cancer and facilitates tumor growth. PLoS One.
11:e1611632016. View Article : Google Scholar
|
14
|
Li Q, Yin L, Jones LW, Chu GC, Wu JB,
Huang JM, Li Q, You S, Kim J, Lu YT, et al: Keratin 13 expression
reprograms bone and brain metastases of human prostate cancer
cells. Oncotarget. 7:84645–84657. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Eckstein M, Wirtz RM, Gross-Weege M,
Breyer J, Otto W, Stoehr R, Sikic D, Keck B, Eidt S, Burger M, et
al: mRNA-Expression of KRT5 and KRT20 defines distinct prognostic
subgroups of muscle-invasive urothelial bladder cancer correlating
with histological variants. Int J Mol Sci. 19(pii): E33962018.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li D, Ni XF, Tang H, Zhang J, Zheng C, Lin
J, Wang C, Sun L and Chen B: KRT17 Functions as a tumor promoter
and regulates proliferation, migration and invasion in pancreatic
cancer via mTOR/S6k1 pathway. Cancer Manag Res. 12:2087–2095. 2020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Depianto D, Kerns ML, Dlugosz AA and
Coulombe PA: Keratin 17 promotes epithelial proliferation and tumor
growth by polarizing the immune response in skin. Nat Genet.
42:910–914. 2010. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Yang L, Zhang S and Wang G: Keratin 17 in
disease pathogenesis: From cancer to dermatoses. J Pathol.
247:158–165. 2019.PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Pan C, Liu Q and Wu X:
HIF1α/miR-520a-3p/AKT1/mTOR feedback promotes The proliferation and
glycolysis of gastric cancer cells. Cancer Manag Res.
11:10145–10156. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kobliakov VA: The mechanisms of regulation
of aerobic glycolysis (warburg effect) by oncoproteins in
carcinogenesis. Biochemistry (Mosc). 84:1117–1128. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Abbaszadeh Z, Cesmeli S and Biray Avci C:
Crucial players in glycolysis: Cancer progress. Gene.
726:1441582020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liao Z, She C, Ma L, Sun Z, Li P, Zhang X,
Wang P and Li W: KDELR2 Promotes glioblastoma tumorigenesis
targeted by HIF1a via mTOR signaling pathway. Cell Mol Neurobiol.
39:1207–1215. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen P, Shen Z, Fang X, Wang G, Wang X,
Wang J and Xi S: Silencing of keratin 17 by lentivirus-mediated
short hairpin RNA inhibits the proliferation of PANC-1 human
pancreatic cancer cells. Oncol Lett. 19:3531–3541. 2020.PubMed/NCBI
|
25
|
Hu H, Xu DH, Huang XX, Zhu CC, Xu J, Zhang
ZZ and Zhao G: Keratin 17 promotes tumor growth and is associated
with poor prognosis in gastric Cancer. J Cancer. 9:346–357. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu J, Liu L, Cao L and Wen Q: Keratin 17
promotes lung adenocarcinoma progression by enhancing cell
proliferation and invasion. Med Sci Monit. 24:4782–4790. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li J, Chen Q, Deng Z, Chen X, Liu H, Tao
Y, Wang X, Lin S and Liu N: KRT17 confers paclitaxel-induced
resistance and migration to cervical cancer cells. Life Sci.
224:255–262. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu L, Chai L, Ran J, Yang Y and Zhang L:
BAI1 acts as a tumor suppressor in lung cancer A549 cells by
inducing metabolic reprogramming via the SCD1/HMGCR module.
Carcinogenesis. Apr 7–2020.([Epub ahead of print). View Article : Google Scholar
|
29
|
Ma H, Su R, Feng H, Guo Y and Su G: Long
noncoding RNA UCA1 promotes osteosarcoma metastasis through
CREB1-mediated epithelial-mesenchymal transition and activating
PI3K/AKT/mTOR pathway. J Bone Oncol. 16:1002282019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mei L, Sang W, Cui K, Zhang Y, Chen F and
Li X: Norcantharidin inhibits proliferation and promotes apoptosis
via c-Met/Akt/mTOR pathway in human osteosarcoma cells. Cancer Sci.
110:582–595. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu F, Na L, Li Y and Chen L: Roles of the
PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and
tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sankar S, Tanner JM, Bell R, Chaturvedi A,
Randall RL, Beckerle MC and Lessnick SL: A novel role for keratin
17 in coordinating oncogenic transformation and cellular adhesion
in Ewing sarcoma. Mol Cell Biol. 33:4448–4460. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Spirina LV, Kondakova IV, Yurmazov ZA,
Usynin EA, Slonimskaya EM, Lushnikova NA and Podnebesnova DV: VHL
expression in kidney cancer: Relation to metastasis development,
transcription and growth factors and component of Akt/m-TOR
signaling pathway. Bull Exp Biol Med. 167:671–675. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti
OD, Liu P, Liu T, Long Y, Chong T, et al: EBV-miR-BART1-5P
activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to
promote glycolysis and angiogenesis in nasopharyngeal carcinoma.
PLoS Pathog. 14:e10074842018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cheng SC, Quintin J, Cramer RA, Shepardson
KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao
NA, Aghajanirefah A, et al: mTOR- and HIF-1alpha-mediated aerobic
glycolysis as metabolic basis for trained immunity. Science.
345:12506842014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang Y, Huang Y, Liu H, Su D, Luo F and
Zhou F: Long noncoding RNA CDKN2B-AS1 interacts with miR-411-3p to
regulate ovarian cancer in vitro and in vivo through
HIF-1a/VEGF/P38 pathway. Biochem Biophys Res Commun. 514:44–50.
2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shi L, He C, Li Z, Wang Z and Zhang Q:
FBP1 modulates cell metabolism of breast cancer cells by inhibiting
the expression of HIF-1α. Neoplasma. 64:535–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lou S, Wang Y, Yu Z, Guan K and Kan Q:
Curcumin induces apoptosis and inhibits proliferation in infantile
hemangioma endothelial cells via downregulation of MCL-1 and
HIF-1α. Medicine (Baltimore). 97:e95622018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang H, Li ZY, Xu ZH, Chen YL, Lu ZY, Shen
DY, Lu JY, Zheng QM, Wang LY, Xu LW, et al: The prognostic value of
miRNA-18a-5p in clear cell renal cell carcinoma and its function
via the miRNA-18a-5p/HIF1A/PVT1 pathway. J Cancer. 11:2737–2748.
2020. View Article : Google Scholar : PubMed/NCBI
|