1
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Qiang H, Chang Q, Xu J, Qian J, Zhang Y,
Lei Y, Han B and Chu T: New advances in antiangiogenic combination
therapeutic strategies for advanced non-small cell lung cancer. J
Cancer Res Clin Oncol. 146:631–645. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arbour KC and Riely GJ: Systemic therapy
for locally advanced and metastatic non-small cell lung cancer: A
review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Skoulidis F and Heymach JV: Co-occurring
genomic alterations in non-small-cell lung cancer biology and
therapy. Nat Rev Cancer. 19:495–509. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Santoni-Rugiu E, Melchior LC, Urbanska EM,
Jakobsen JN, Stricker K, Grauslund M and Sørensen JB: Intrinsic
resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant
non-small cell lung cancer: Differences and similarities with
acquired resistance. Cancers (Basel). 11:9232019. View Article : Google Scholar
|
6
|
Shah R and Lester JF: Tyrosine kinase
inhibitors for the treatment of EGFR mutation-positive
non-small-cell lung cancer: A clash of the generations. Clin Lung
Cancer. 21:e216–e228. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Qie S and Diehl JA: Cyclin D degradation
by E3 ligases in cancer progression and treatment. Semin Cancer
Biol. Jan 30–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
8
|
Musgrove EA, Caldon CE, Barraclough J,
Stone A and Sutherland RL: Cyclin D as a therapeutic target in
cancer. Nat Rev Cancer. 11:558–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chou J, Quigley DA, Robinson TM, Feng FY
and Ashworth A: Transcription-associated cyclin-dependent kinases
as targets and biomarkers for cancer therapy. Cancer Discov.
10:351–370. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qie S and Diehl JA: Cyclin D1, cancer
progression, and opportunities in cancer treatment. J Mol Med
(Berl). 94:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ramos-García P, González-Moles MÁ, Ayén Á,
González-Ruiz L, Gil-Montoya JA and Ruiz-Ávila I: Predictive value
of CCND1/cyclin D1 alterations in the malignant transformation of
potentially malignant head and neck disorders: Systematic review
and meta-analysis. Head Neck. 41:3395–3407. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Y, Li M, Yu X, Liu T, Li T, Zhou L,
Liu W, Li W and Gao F: Butein suppresses hepatocellular carcinoma
growth via modulating Aurora B kinase activity. Int J Biol Sci.
14:1521–1534. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W and
Liu H: Deguelin suppresses non-small cell lung cancer by inhibiting
EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1
destabilization. Cell Death Dis. 11:1432020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu X, Liang Q, Liu W, Zhou L, Li W and Liu
H: Deguelin, an Aurora B kinase inhibitor, exhibits potent
anti-tumor effect in human esophageal squamous cell carcinoma.
EBioMedicine. 26:100–111. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou
H, Liu L, Wang J, Yang Y and Liu H: Repression of Noxa by Bmi1
contributes to deguelin-induced apoptosis in non-small cell lung
cancer cells. J Cell Mol Med. 22:6213–6227. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu H, Li W, Yu X, Gao F, Duan Z, Ma X,
Tan S, Yuan Y, Liu L, Wang J, et al: EZH2-mediated Puma gene
repression regulates non-small cell lung cancer cell proliferation
and cisplatin-induced apoptosis. Oncotarget. 7:56338–56354. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou L, Yu X, Li M, Gong G, Liu W, Li T,
Zuo H, Li W, Gao F and Liu H: Cdh1-mediated Skp2 degradation by
dioscin reprogrammes aerobic glycolysis and inhibits colorectal
cancer cells growth. EBioMedicine. 51:1025702020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu
H and Li W: Skp2-mediated ubiquitination and mitochondrial
localization of Akt drive tumor growth and chemoresistance to
cisplatin. Oncogene. 38:7457–7472. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang CH, Sun TL, Xiang DX, Wei SS and Li
WQ: Anticancer activity and mechanism of xanthohumol: A prenylated
flavonoid from Hops (Humulus lupulus L.). Front Pharmacol.
9:5302018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Klein EA and Assoian RK: Transcriptional
regulation of the cyclin D1 gene at a glance. J Cell Sci.
121:3853–3857. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Basbous J, Chalbos D, Hipskind R,
Jariel-Encontre I and Piechaczyk M: Ubiquitin-independent
proteasomal degradation of Fra-1 is antagonized by Erk1/2
pathway-mediated phosphorylation of a unique C-terminal
destabilizer. Mol Cell Biol. 27:3936–3950. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu W, Li W, Liu H and Yu X: Xanthohumol
inhibits colorectal cancer cells via downregulation of Hexokinases
II-mediated glycolysis. Int J Biol Sci. 15:2497–2508. 2019.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Sławińska-Brych A, Zdzisińska B,
Dmoszyńska-Graniczka M, Jeleniewicz W, Kurzepa J, Gagoś M and
Stepulak A: Xanthohumol inhibits the extracellular signal regulated
kinase (ERK) signalling pathway and suppresses cell growth of lung
adenocarcinoma cells. Toxicology. 357-358:65–73. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kłósek M, Mertas A, Król W, Jaworska D,
Szymszal J and Szliszka E: Tumor necrosis factor-related
apoptosis-inducing ligand-induced apoptosis in prostate cancer
cells after treatment with xanthohumol-A natural compound present
in Humulus lupulus L. Int J Mol Sci. 17:8372016. View Article : Google Scholar
|
25
|
Wei S, Sun T, Du J, Zhang B, Xiang D and
Li W: Xanthohumol, a prenylated flavonoid from Hops, exerts
anticancer effects against gastric cancer in vitro. Oncol
Rep. 40:3213–3222. 2018.PubMed/NCBI
|
26
|
Silva AF, Faria-Costa G, Sousa-Nunes F,
Santos MF, Ferreira-Pinto MJ, Duarte D, Rodrigues I, Tiago
Guimarães J, Leite-Moreira A, Moreira-Gonçalves D, et al:
Anti-remodeling effects of xanthohumol-fortified beer in pulmonary
arterial hypertension mediated by ERK and AKT inhibition.
Nutrients. 11:5832019. View Article : Google Scholar
|
27
|
Guo D, Zhang B, Liu S and Jin M:
Xanthohumol induces apoptosis via caspase activation, regulation of
Bcl-2, and inhibition of PI3K/Akt/mTOR-kinase in human gastric
cancer cells. Biomed Pharmacother. 106:1300–1306. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saito K, Matsuo Y, Imafuji H, Okubo T,
Maeda Y, Sato T, Shamoto T, Tsuboi K, Morimoto M, Takahashi H, et
al: Xanthohumol inhibits angiogenesis by suppressing nuclear
factor-κB activation in pancreatic cancer. Cancer Sci. 109:132–140.
2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Engelsgjerd S, Kunnimalaiyaan S, Kandil E,
Gamblin TC and Kunnimalaiyaan M: Xanthohumol increases death
receptor 5 expression and enhances apoptosis with the TNF-related
apoptosis-inducing ligand in neuroblastoma cell lines. PLoS One.
14:e02137762019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chambard JC, Lefloch R, Pouysségur J and
Lenormand P: ERK implication in cell cycle regulation. Biochim
Biophys Acta. 1773:1299–1310. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tchakarska G and Sola B: The double
dealing of cyclin D1. Cell Cycle. 19:163–178. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dhillon AS and Tulchinsky E: FRA-1 as a
driver of tumour heterogeneity: A nexus between oncogenes and
embryonic signalling pathways in cancer. Oncogene. 34:4421–4428.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yun SI, Hong HK, Yeo SY, Kim SH, Cho YB
and Kim KK: Ubiquitin-specific protease 21 promotes colorectal
cancer metastasis by acting as a Fra-1 deubiquitinase. Cancers
(Basel). 12:2072020. View Article : Google Scholar
|
34
|
Zhang Z, Zhang Y, Zhang L, Pei Y, Wu Y,
Liang H, Zhang W and Zhang B: Incomplete radiofrequency ablation
provokes colorectal cancer liver metastases through heat shock
response by PKCα/Fra-1 pathway. Cancer Biol Med. 16:542–555.
2019.PubMed/NCBI
|
35
|
Tyagi A, Vishnoi K, Kaur H, Srivastava Y,
Roy BG, Das BC and Bharti AC: Cervical cancer stem cells manifest
radioresistance: Association with upregulated AP-1 activity. Sci
Rep. 7:47812017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lu D, Chen S, Tan X, Li N, Liu C, Li Z,
Liu Z, Stupack DG, Reisfeld RA and Xiang R: Fra-1 promotes breast
cancer chemosensitivity by driving cancer stem cells from dormancy.
Cancer Res. 72:3451–3456. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jiang X, Xie H, Dou Y, Yuan J, Zeng D and
Xiao S: Expression and function of FRA1 protein in tumors. Mol Biol
Rep. 47:737–752. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Román M, López I, Guruceaga E, Baraibar I,
Ecay M, Collantes M, Nadal E, Vallejo A, Cadenas S, Miguel ME, et
al: Inhibitor of differentiation-1 sustains mutant KRAS-driven
progression, maintenance, and metastasis of lung adenocarcinoma via
regulation of a FOSL1 network. Cancer Res. 79:625–638. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Keshamouni VG: Excavation of FOSL1 in the
ruins of KRAS-driven lung cancer. Am J Respir Cell Mol Biol.
58:551–552. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Elangovan IM, Vaz M, Tamatam CR, Potteti
HR, Reddy NM and Reddy SP: FOSL1 promotes Kras-induced lung cancer
through amphiregulin and cell survival gene regulation. Am J Respir
Cell Mol Biol. 58:625–635. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gomard T, Jariel-Encontre I, Basbous J,
Bossis G, Moquet-Torcy G and Piechaczyk M: Fos family protein
degradation by the proteasome. Biochem Soc Trans. 36:858–863. 2008.
View Article : Google Scholar : PubMed/NCBI
|