Sorting Nexin 27 as a potential target in G protein‑coupled receptor recycling for cancer therapy (Review)
- Authors:
- Zixu Bao
- Shijun Zhou
- Haisheng Zhou
-
Affiliations: Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Infectious Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China - Published online on: September 14, 2020 https://doi.org/10.3892/or.2020.7766
- Pages: 1779-1786
-
Copyright: © Bao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gallon M and Cullen PJ: Retromer and sorting nexins in endosomal sorting. Biochem Soc Trans. 43:33–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ and von Zastrow M: SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol. 13:715–721. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clairfeuille T, Mas C, Chan AS, Yang Z, Tello-Lafoz M, Chandra M, Widagdo J, Kerr MC, Paul B, Mérida I, et al: A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol. 23:921–932. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pavlos NJ and Friedman PA: GPCR signaling and trafficking: The long and short of it. Trends Endocrinol Metab. 28:213–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li K, Zhang Y, Lu R, Wu S, Tang J, Xia Y and Sun J: Deletion of sorting nexin 27 suppresses proliferation in highly aggressive breast cancer MDA-MB-231 cells in vitro and in vivo. BMC Cancer. 19:5552019. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC and Datta S: SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol. 219:e2018120982020. View Article : Google Scholar : PubMed/NCBI | |
Bjarnadóttir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R and Schiöth HB: Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics. 88:263–273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lefkowitz RJ: A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl. 52:6366–6378. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, et al: Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 283:655–661. 1999. View Article : Google Scholar : PubMed/NCBI | |
DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD and Bunnett NW: Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 148:1267–1281. 2000. View Article : Google Scholar : PubMed/NCBI | |
McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ and Lefkowitz RJ: Beta-arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science. 290:1574–1577. 2000. View Article : Google Scholar : PubMed/NCBI | |
Eichel K, Jullié D and von Zastrow M: β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol. 18:303–310. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oakley RH, Laporte SA, Holt JA, Caron MG and Barak LS: Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem. 275:17201–17210. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thomsen ARB, Plouffe B, Cahill TJ III, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, et al: GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell. 166:907–919. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Qiao Y and Li Z: New insights into modes of GPCR activation. Trends Pharmacol Sci. 39:367–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomsen ARB, Jensen DD, Hicks GA and Bunnett NW: Therapeutic targeting of endosomal G-protein-coupled receptors. Trends Pharmacol Sci. 39:879–891. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nieto Gutierrez A and McDonald PH: GPCRs: Emerging anti-cancer drug targets. Cell Signal. 41:65–74. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bar-Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S and Uziely B: G protein-coupled receptors in cancer. Int J Mol Sci. 17:13202016. View Article : Google Scholar | |
Young D, Waitches G, Birchmeier C, Fasano O and Wigler M: Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 45:711–719. 1986. View Article : Google Scholar : PubMed/NCBI | |
Chan AS, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, et al: Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell. 27:1367–1382. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T and Asahi M: β1-adrenergic receptor recycles via a membranous organelle, recycling endosome, by binding with sorting nexin27. J Membr Biol. 246:571–579. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nooh MM, Mancarella S and Bahouth SW: Identification of novel transplantable GPCR recycling motif for drug discovery. Biochem Pharmacol. 120:22–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin TB, Lai CY, Hsieh MC, Wang HH, Cheng JK, Chau YP, Chen GD and Peng HY: VPS26A-SNX27 interaction-dependent mGluR5 recycling in dorsal horn neurons mediates neuropathic pain in rats. J Neurosci. 35:14943–14955. 2015. View Article : Google Scholar : PubMed/NCBI | |
Balana B, Maslennikov I, Kwiatkowski W, Stern KM, Bahima L, Choe S and Slesinger PA: Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc Natl Acad Sci USA. 108:5831–5836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nassirpour R and Slesinger PA: Subunit-specific regulation of Kir3 channels by sorting nexin 27. Channels (Austin). 1:331–333. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng CM, Chen Z and Fu L: Frizzled receptors as potential therapeutic targets in human cancers. Int J Mol Sci. 19:15432018. View Article : Google Scholar | |
Lupp A, Klenk C, Röcken C, Evert M, Mawrin C and Schulz S: Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 162:979–986. 2010. View Article : Google Scholar : PubMed/NCBI | |
Calvo N, Martin MJ, de Boland AR and Gentili C: Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Biochem Cell Biol. 92:305–315. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boras-Granic K and Wysolmerski JJ: PTHrP and breast cancer: More than hypercalcemia and bone metastases. Breast Cancer Res. 14:3072012. View Article : Google Scholar : PubMed/NCBI | |
Ongkeko WM, Burton D, Kiang A, Abhold E, Kuo SZ, Rahimy E, Yang M, Hoffman RM, Wang-Rodriguez J and Deftos LJ: Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One. 9:e858032014. View Article : Google Scholar : PubMed/NCBI | |
Coelho M, Soares-Silva C, Brandão D, Marino F, Cosentino M and Ribeiro L: β-adrenergic modulation of cancer cell proliferation: Available evidence and clinical perspectives. J Cancer Res Clin Oncol. 143:275–291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu HC, Wang C, Xie N, Zhuang Z, Liu X, Hou J and Huang H: Activation of adrenergic receptor β2 promotes tumor progression and epithelial mesenchymal transition in tongue squamous cell carcinoma. Int J Mol Med. 41:147–154. 2018.PubMed/NCBI | |
Pu J, Zhang X, Luo H, Xu L, Lu X and Lu J: Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis. Biochem Biophys Res Commun. 493:1273–1279. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cole SW and Sood AK: Molecular pathways: Beta-adrenergic signaling in cancer. Clin Cancer Res. 18:1201–1206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Ma QY, Hu HT and Zhang M: β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther. 10:19–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Du J, Li XH and Li YJ: Glutamate in peripheral organs: Biology and pharmacology. Eur J Pharmacol. 784:42–48. 2016. View Article : Google Scholar : PubMed/NCBI | |
Skerry TM and Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 22:174–181. 2001. View Article : Google Scholar : PubMed/NCBI | |
Robert SM and Sontheimer H: Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci. 71:1839–1854. 2014. View Article : Google Scholar : PubMed/NCBI | |
Prickett TD and Samuels Y: Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res. 18:4240–4246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iacovelli L, Bruno V, Salvatore L, Melchiorri D, Gradini R, Caricasole A, Barletta E, De Blasi A and Nicoletti F: Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J Neurochem. 82:216–223. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Zhao S, Qi C, Zhao X, Liu B, Hao F and Zhao Z: Inhibition of metabotropic glutamate receptor 5 facilitates hypoxia-induced glioma cell death. Brain Res. 1704:241–248. 2019. View Article : Google Scholar : PubMed/NCBI | |
Touhara KK and MacKinnon R: Molecular basis of signaling specificity between GIRK channels and GPCRs. Elife. 7:e429082018. View Article : Google Scholar : PubMed/NCBI | |
Takanami I, Inoue Y and Gika M: G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer. BMC Cancer. 4:792004. View Article : Google Scholar : PubMed/NCBI | |
Rezania S, Kammerer S, Li C, Steinecker-Frohnwieser B, Gorischek A, DeVaney TT, Verheyen S, Passegger CA, Tabrizi-Wizsy NG, Hackl H, et al: Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner. BMC Cancer. 16:6282016. View Article : Google Scholar : PubMed/NCBI | |
Plummer HK III, Dhar MS, Cekanova M and Schuller HM: Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer. 5:1042005. View Article : Google Scholar : PubMed/NCBI | |
Munoz MB and Slesinger PA: Sorting nexin 27 regulation of G protein-gated inwardly rectifying K(+) channels attenuates in vivo cocaine response. Neuron. 82:659–669. 2014. View Article : Google Scholar : PubMed/NCBI | |
Katanaev VL: The Wnt/Frizzled GPCR signaling pathway. Biochemistry (Mosc). 75:1428–1434. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chakravarthi BVSK, Chandrashekar DS, Hodigere Balasubramanya SA, Robinson AD, Carskadon S, Rao U, Gordetsky J, Manne U, Netto GJ, Sudarshan S, et al: Wnt receptor Frizzled 8 is a target of ERG in prostate cancer. Prostate. 78:1311–1320. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Hu X, Chen W, He W, Zhang Z and Wang T: Sorting nexin 27 interacts with Fzd7 and mediates Wnt signalling. Biosci Rep. 36:e002962016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li L, Liu J, Wang Y, Wang Z, Wang Y, Liu W, Zhou Z, Chen C, Liu R and Yang R: CC chemokine receptor 7 promotes triple-negative breast cancer growth and metastasis. Acta Biochim Biophys Sin (Shanghai). 50:835–842. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin HY, Sun SM, Lu XF, Chen PY, Chen CF, Liang WQ and Peng CY: CCR10 activation stimulates the invasion and migration of breast cancer cells through the ERK1/2/MMP-7 signaling pathway. Int Immunopharmacol. 51:124–130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bai M, Chen X and Ba YI: CXCL10/CXCR3 overexpression as a biomarker of poor prognosis in patients with stage II colorectal cancer. Mol Clin Oncol. 4:23–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC and Honn KV: Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Rev. 34:775–796. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arakaki AKS, Pan WA and Trejo J: GPCRs in cancer: Protease-activated receptors, endocytic adaptors and signaling. Int J Mol Sci. 19:18862018. View Article : Google Scholar | |
Wang J, Sun Y, Qu JK, Yan Y, Yang Y and Cai H: Roles of LPA receptor signaling in breast cancer. Expert Rev Mol Diagn. 16:1103–1111. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lopane C, Agosti P, Gigante I, Sabbà C and Mazzocca A: Implications of the lysophosphatidic acid signaling axis in liver cancer. Biochim Biophys Acta Rev Cancer. 1868:277–282. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Zhang C, Ma L, Zhang X, Shi S, Tang D, Xu J, Hu Y, Wang B, Zhang F, et al: Lysophosphatidic acid induces the migration and invasion of SGC-7901 gastric cancer cells through the LPA2 and Notch signaling pathways. Int J Mol Med. 44:67–78. 2019.PubMed/NCBI | |
Yu X, Zhang Y and Chen H: LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: An in vitro and in vivo study. BMC Cancer. 16:8462016. View Article : Google Scholar : PubMed/NCBI | |
Feldman RD and Limbird LE: GPER (GPR30): A nongenomic receptor (GPCR) for steroid hormones with implications for cardiovascular disease and cancer. Annu Rev Pharmacol Toxicol. 57:567–584. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noll B, Benz D, Frey Y, Meyer F, Lauinger M, Eisler SA, Schmid S, Hordijk PL and Olayioye MA: DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes. J Cell Sci. 132:jcs2231722019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Follett J, Kerr MC, Clairfeuille T, Chandra M, Collins BM and Teasdale RD: Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2. J Biol Chem. 293:6802–6811. 2018. View Article : Google Scholar : PubMed/NCBI | |
Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM and Cullen PJ: A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol. 15:461–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ and Vilardaga JP: Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol. 7:278–284. 2011. View Article : Google Scholar : PubMed/NCBI | |
Irannejad R and von Zastrow M: GPCR signaling along the endocytic pathway. Curr Opin Cell Biol. 27:109–116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eichel K and von Zastrow M: Subcellular organization of GPCR signaling. Trends Pharmacol Sci. 39:200–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gupta MK, Mohan ML and Naga Prasad SV: G protein-coupled receptor resensitization paradigms. Int Rev Cell Mol Biol. 339:63–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vardarajan BN, Breusegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN and Farrer LA: Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging. 34:2231.e15–2231.e30. 2012. View Article : Google Scholar | |
Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso JC, Lewis PA, Bandopadhyay R, et al: Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet. 23:4621–4638. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, et al: Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat Med. 19:473–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
Damseh N, Danson CM, Al-Ashhab M, Abu-Libdeh B, Gallon M, Sharma K, Yaacov B, Coulthard E, Caldwell MA, Edvardson S, et al: A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics. 16:215–221. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hussain NK, Diering GH, Sole J, Anggono V and Huganir RL: Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc Natl Acad Sci USA. 111:11840–11845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Choy RW, Park M, Temkin P, Herring BE, Marley A, Nicoll RA and von Zastrow M: Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron. 82:55–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
McGarvey JC, Xiao K, Bowman SL, Mamonova T, Zhang Q, Bisello A, Sneddon WB, Ardura JA, Jean-Alphonse F, Vilardaga JP, et al: Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J Biol Chem. 291:10986–11002. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T and von Zastrow M: SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J Cell Biol. 190:565–574. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rincón E, Santos T, Avila-Flores A, Albar JP, Lalioti V, Lei C, Hong W and Mérida I: Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: New diacylglycerol kinase roles in endocytic recycling. Mol Cell Proteomics. 6:1073–1087. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seaman MN, Gautreau A and Billadeau DD: Retromer-mediated endosomal protein sorting: All WASHed up! Trends Cell Biol. 23:522–528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dev KK: Making protein interactions druggable: Targeting PDZ domains. Nat Rev Drug Discov. 3:1047–1056. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, Zhang Y, Alpatov I, Zhang XA, Lang RA, et al: Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem. 284:16256–16263. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patra CR, Rupasinghe CN, Dutta SK, Bhattacharya S, Wang E, Spaller MR and Mukhopadhyay D: Chemically modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer. ACS Chem Biol. 7:770–779. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Qu J, Zhou W, Huang Y, Jia L, Huang X, Qian Z, Xia J and Yu Y: Syntenin-targeted peptide blocker inhibits progression of cancer cells. Eur J Med Chem. 154:354–366. 2018. View Article : Google Scholar : PubMed/NCBI | |
Das SK, Kegelman TP, Pradhan AK, Shen XN, Bhoopathi P, Talukdar S, Maji S, Sarkar D, Emdad L and Fisher PB: Suppression of prostate cancer pathogenesis using an MDA-9/Syntenin (SDCBP) PDZ1 small-molecule inhibitor. Mol Cancer Ther. 18:1997–2007. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shinde SR and Maddika S: PTEN regulates glucose transporter recycling by impairing SNX27 retromer assembly. Cell Rep. 21:1655–1666. 2017. View Article : Google Scholar : PubMed/NCBI |