1
|
Shoshan-Barmatz V, Krelin Y and Chen Q:
VDAC1 as a player in mitochondria-mediated apoptosis and target for
modulating apoptosis. Curr Med Chem. 24:4435–4446. 2017.PubMed/NCBI
|
2
|
Bayrhuber M, Meins T, Habeck M, Becker S,
Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M and
Zeth K: Structure of the human voltage-dependent anion channel.
Proc Natl Acad Sci USA. 105:15370–15375. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hiller S, Garces RG, Malia TJ, Orekhov VY,
Colombini M and Wagner G: Solution structure of the integral human
membrane protein VDAC-1 in detergent micelles. Science.
321:1206–1210. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maldonado EN, Sheldon KL, DeHart DN,
Patnaik J, Manevich Y, Townsend DM, Bezrukov SM, Rostovtseva TK and
Lemasters JJ: Voltage-dependent anion channels modulate
mitochondrial metabolism in cancer cells: Regulation by free
tubulin and erastin. J Biol Chem. 288:11920–11929. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shuvo SR, Ferens FG and Court DA: The
N-terminus of VDAC: Structure, mutational analysis, and a potential
role in regulating barrel shape. Biochim Biophys Acta.
1858:1350–1361. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Keinan N, Tyomkin D and Shoshan-Barmatz V:
Oligomerization of the mitochondrial protein voltage-dependent
anion channel is coupled to the induction of apoptosis. Mol Cell
Biol. 30:5698–5709. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tian M, Xie Y, Meng Y, Ma W, Tong Z, Yang
X, Lai S, Zhou Y, He M and Liao Z: Resveratrol protects
cardiomyocytes against anoxia/reoxygenation via dephosphorylation
of VDAC1 by Akt-GSK3 β pathway. Eur J Pharmacol. 843:80–87. 2019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Heslop KA, Rovini A, Hunt EG, Fang D,
Morris ME, Christie CF, Gooz MB, DeHart DN, Dang Y, Lemasters JJ
and Maldonado EN: JNK activation and translocation to mitochondria
mediates mitochondrial dysfunction and cell death induced by VDAC
opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol.
171:1137282020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Abu-Hamad S, Zaid H, Israelson A, Nahon E
and Shoshan-Barmatz V: Hexokinase-I protection against apoptotic
cell death is mediated via interaction with the voltage-dependent
anion channel-1: Mapping the site of binding. J Biol Chem.
283:13482–13490. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L,
Krelin Y and Tripathi SS: The mitochondrial voltage-dependent anion
channel 1 in tumor cells. Biochim Biophys Acta. 1848:2547–2575.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mazure NM: VDAC in cancer. Biochim Biophys
Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tajeddine N, Galluzzi L, Kepp O, Hangen E,
Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami
N, et al: Hierarchical involvement of Bak, VDAC1 and Bax in
cisplatin-induced cell death. Oncogene. 27:4221–4232. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Matsubara H, Tanaka R, Tateishi T, Yoshida
H, Yamaguchi M and Kataoka T: The human Bcl-2 family member
Bcl-rambo and voltage-dependent anion channels manifest a genetic
interaction in Drosophila and cooperatively promote the activation
of effector caspases in human cultured cells. Exp Cell Res.
381:223–234. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pastorino JG, Hoek JB and Shulga N:
Activation of glycogen synthase kinase 3beta disrupts the binding
of hexokinase II to mitochondria by phosphorylating
voltage-dependent anion channel and potentiates
chemotherapy-induced cytotoxicity. Cancer Res. 65:10545–10554.
2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Head SA, Shi W, Zhao L, Gorshkov K,
Pasunooti K, Chen Y, Deng Z, Li RJ, Shim JS, Tan W, et al:
Antifungal drug itraconazole targets VDAC1 to modulate the
AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci
USA. 112:E7276–E7285. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rostovtseva TK, Sheldon KL, Hassanzadeh E,
Monge C, Saks V, Bezrukov SM and Sackett DL: Tubulin binding blocks
mitochondrial voltage-dependent anion channel and regulates
respiration. Proc Natl Acad Sci USA. 105:18746–18751. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Rovini A: Tubulin-VDAC interaction:
Molecular basis for mitochondrial dysfunction in
chemotherapy-induced peripheral neuropathy. Front Physiol.
10:6712019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shoshan-Barmatz V, Mizrachi D and Keinan
N: Oligomerization of the mitochondrial protein VDAC1: From
structure to function and cancer therapy. Prog Mol Biol Transl Sci.
117:303–334. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xie Q, Wondergem R, Shen Y, Cavey G, Ke J,
Thompson R, Bradley R, Daugherty-Holtrop J, Xu Y, Chen E, et al:
Benzoquinone ansamycin 17AAG binds to mitochondrial
voltage-dependent anion channel and inhibits cell invasion. Proc
Natl Acad Sci USA. 108:4105–4110. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Q, Sun W, Hao X, Li T, Su L and Liu
X: Down-regulation of cellular FLICE-inhibitory protein (Long Form)
contributes to apoptosis induced by Hsp90 inhibition in human lung
cancer cells. Cancer Cell Int. 12:542012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu X, Yue P, Zhou Z, Khuri FR and Sun SY:
Death receptor regulation and celecoxib-induced apoptosis in human
lung cancer cells. J Natl Cancer Inst. 96:1769–1780. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chatterjee M, Jain S, Stühmer T, Andrulis
M, Ungethüm U, Kuban RJ, Lorentz H, Bommert K, Topp M, Krämer D, et
al: STAT3 and MAPK signaling maintain overexpression of heat shock
proteins 90alpha and beta in multiple myeloma cells, which
critically contribute to tumor-cell survival. Blood. 109:720–728.
2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Abu-Hamad S, Sivan S and Shoshan-Barmatz
V: The expression level of the voltage-dependent anion channel
controls life and death of the cell. Proc Natl Acad Sci USA.
103:5787–5792. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Su L, Liu G, Hao X, Zhong N, Zhong D, Liu
X and Singhal S: Death receptor 5 and cellular FLICE-inhibitory
protein regulate pemetrexed-induced apoptosis in human lung cancer
cells. Eur J Cancer. 47:2471–2478. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chacko AD, Liberante F, Paul I, Longley DB
and Fennell DA: Voltage dependent anion channel-1 regulates death
receptor mediated apoptosis by enabling cleavage of caspase-8. BMC
Cancer. 10:3802010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li L and Yang XJ: Tubulin acetylation:
Responsible enzymes, biological functions and human diseases. Cell
Mol Life Sci. 72:4237–4255. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park MA, Zhang G, Mitchell C, Rahmani M,
Hamed H, Hagan MP, Yacoub A, Curiel DT, Fisher PB, Grant S and Dent
P: Mitogen-activated protein kinase kinase 1/2 inhibitors and
17-allylamino-17-demethoxygeldanamycin synergize to kill human
gastrointestinal tumor cells in vitro via suppression of c-FLIP-s
levels and activation of CD95. Mol Cancer Ther. 7:2633–2648. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shida T, Cueva JG, Xu Z, Goodman MB and
Nachury MV: The major alpha-tubulin K40 acetyltransferase alphaTAT1
promotes rapid ciliogenesis and efficient mechanosensation. Proc
Natl Acad Sci USA. 107:21517–21522. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Eshun-Wilson L, Zhang R, Portran D,
Nachury MV, Toso DB, Löhr T, Vendruscolo M, Bonomi M, Fraser JS and
Nogales E: Effects of α-tubulin acetylation on microtubule
structure and stability. Proc Natl Acad Sci USA. 116:10366–10371.
2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
No M, Choi EJ and Kim IA: Targeting HER2
signaling pathway for radiosensitization: Alternative strategy for
therapeutic resistance. Cancer Biol Ther. 8:2351–2361. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Burke PJ: Mitochondria, bioenergetics and
apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Krüger V, Becker T, Becker L,
Montilla-Martinez M, Ellenrieder L, Vögtle FN, Meyer HE, Ryan MT,
Wiedemann N, Warscheid B, et al: Identification of new channels by
systematic analysis of the mitochondrial outer membrane. J Cell
Biol. 216:3485–3495. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Reif MM, Fischer M, Fredriksson K, Hagn F
and Zacharias M: The N-terminal segment of the voltage-dependent
anion channel: A possible membrane-bound intermediate in pore
unbinding. J Mol Biol. 431:223–243. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Böhm R, Amodeo GF, Murlidaran S, Chavali
S, Wagner G, Winterhalter M, Brannigan G and Hiller S: The
structural basis for low conductance in the membrane protein VDAC
upon β-NADH binding and voltage gating. Structure. 28:206–214.e4.
2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Urbani A, Giorgio V, Carrer A, Franchin C,
Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, et
al: Purified F-ATP synthase forms a Ca2+-dependent
high-conductance channel matching the mitochondrial permeability
transition pore. Nat Commun. 10:43412019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cosentino K and García-Sáez AJ: Bax and
Bak pores: Are we closing the circle? Trends Cell Biol. 27:266–275.
2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chin HS, Li MX, Tan IKL, Ninnis RL, Reljic
B, Scicluna K, Dagley LF, Sandow JJ, Kelly GL, Samson AL, et al:
VDAC2 enables BAX to mediate apoptosis and limit tumor development.
Nat Commun. 9:49762018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zalk R, Israelson A, Garty ES,
Azoulay-Zohar H and Shoshan-Barmatz V: Oligomeric states of the
voltage-dependent anion channel and cytochrome c release from
mitochondria. Biochem J. 386:73–83. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rosano C: Molecular model of hexokinase
binding to the outer mitochondrial membrane porin (VDAC1):
Implication for the design of new cancer therapies. Mitochondrion.
11:513–519. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Scharstuhl A, Mutsaers HA, Pennings SW,
Russel FG and Wagener FA: Involvement of VDAC, Bax and ceramides in
the efflux of AIF from mitochondria during curcumin-induced
apoptosis. PLoS One. 4:e66882009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xu Z, Schaedel L, Portran D, Aguilar A,
Gaillard J, Marinkovich MP, Théry M and Nachury MV: Microtubules
acquire resistance from mechanical breakage through intralumenal
acetylation. Science. 356:328–332. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Taschner M, Vetter M and Lorentzen E:
Atomic resolution structure of human α-tubulin acetyltransferase
bound to acetyl-CoA. Proc Natl Acad Sci USA. 109:19649–19654. 2012.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang Q and Liu X: The dual functions of
α-tubulin acetylation in cellular apoptosis and autophage induced
by tanespimycin in lung cancer cells. Cancer Cell Int. 20:3692020.
View Article : Google Scholar : PubMed/NCBI
|