Diverse molecular functions of aspartate β‑hydroxylase in cancer (Review)
- Authors:
- Wenqian Zheng
- Xiaowei Wang
- Jinhui Hu
- Bingjun Bai
- Hongbo Zhu
-
Affiliations: Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China - Published online on: October 6, 2020 https://doi.org/10.3892/or.2020.7792
- Pages: 2364-2372
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lavaissiere L, Jia S, Nishiyama M, De La Monte S, Stern AM, Wands JR and Friedman PA: Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma. J Clin Invest. 98:1313–1323. 1996. View Article : Google Scholar : PubMed/NCBI | |
Korioth F, Gieffers C and Frey J: Cloning and characterization of the human gene encoding aspartyl beta-hydroxylase. Gene. 150:395–399. 1994. View Article : Google Scholar : PubMed/NCBI | |
Dinchuk JE, Henderson NL, Burn TC, Huber R, Ho SP, Link J, O'Neil KT, Focht RJ, Scully MS, Hollis JM, et al: Aspartyl beta-hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin. J Biol Chem. 275:39543–39554. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, VanDusen WJ, Petroski CJ, Garsky VM, Stern AM and Friedman PA: Bovine liver aspartyl beta-hydroxylase: Purification and characterization. J Biol Chem. 266:14004–14010. 1991.PubMed/NCBI | |
McGinnis K, Ku GM, VanDusen WJ, Fu J, Garsky V, Stern AM and Friedman PA: Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) beta-hydroxylase: Evidence that histidine 675 has a role in binding Fe2+. Biochemistry. 35:3957–3962. 1996. View Article : Google Scholar : PubMed/NCBI | |
Stenflo J, Holme E, Lindstedt S, Chandramouli N, Huang LH, Tam JP and Merrifield RB: Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. Proc Natl Acad Sci USA. 86:444–447. 1989. View Article : Google Scholar : PubMed/NCBI | |
Pfeffer I, Brewitz L, Krojer T, Jensen SA, Kochan GT, Kershaw NJ, Hewitson KS, McNeill LA, Kramer H, Münzel M, et al: Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nat Commun. 10:49102019. View Article : Google Scholar : PubMed/NCBI | |
Gronke RS, VanDusen WJ, Garsky VM, Jacobs JW, Sardana MK, Stern AM and Friedman PA: Aspartyl beta-hydroxylase: In vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX. Proc Natl Acad Sci USA. 86:3609–3613. 1989. View Article : Google Scholar : PubMed/NCBI | |
Jia S, VanDusen WJ, Diehl RE, Kohl NE, Dixon RA, Elliston KO, Stern AM and Friedman PA: cDNA cloning and expression of bovine aspartyl (asparaginyl) beta-hydroxylase. J Biol Chem. 267:14322–14327. 1992.PubMed/NCBI | |
Treves S, Feriotto G, Moccagatta L, Gambari R and Zorzato F: Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane. J Biol Chem. 275:39555–39568. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bruix J and Llovet JM: Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology. 35:519–524. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hong CS, Kwon SJ and Kim DH: Multiple functions of junctin and junctate, two distinct isoforms of aspartyl beta-hydroxylase. Biochem Biophys Res Commun. 362:1–4. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jones LR, Zhang L, Sanborn K, Jorgensen AO and Kelley J: Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem. 270:30787–30796. 1995. View Article : Google Scholar : PubMed/NCBI | |
Siggs OM, Souzeau E and Craig JE: Loss of ciliary zonule protein hydroxylation and lens stability as a predicted consequence of biallelic ASPH variation. Ophthalmic Genet. 40:12–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abarca Barriga HH, Caballero N, Trubnykova M, Castro-Mujica MDC, La Serna-Infantes JE, Vásquez F and Hennekam RC: A novel ASPH variant extends the phenotype of Shawaf-Traboulsi syndrome. Am J Med Genet Part A. 176:2494–2500. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni N, Lloyd IC, Ashworth J, Biswas S, Black GCM and Clayton-Smith J; NIHR BioResource Consortium, : Traboulsi syndrome due to ASPH mutation: An under-recognised cause of ectopia lentis. Clin Dysmorphol. 28:184–189. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patel N, Khan AO, Mansour A, Mohamed JY, Al-Assiri A, Haddad R, Jia X, Xiong Y, Mégarbané A, Traboulsi EI and Alkuraya FS: Mutations in ASPH cause facial dysmorphism, lens dislocation, anterior-segment abnormalities, and spontaneous filtering blebs, or Traboulsi syndrome. Am J Hum Genet. 94:755–759. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dinchuk JE, Focht RJ, Kelley JA, Henderson NL, Zolotarjova NI, Wynn R, Neff NT, Link J, Huber RM, Burn TC, et al: Absence of post-translational aspartyl beta-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia. J Biol Chem. 277:12970–12977. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gundogan F, Elwood G, Greco D, Rubin LP, Pinar H, Carlson RI, Wands JR and de la Monte SM: Role of aspartyl-(asparaginyl) beta-hydroxylase in placental implantation: Relevance to early pregnancy loss. Hum Pathol. 38:50–59. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Song K, Xue T, Xue XP, Huyan T, Wang W and Wang H: The distribution and expression profiles of human aspartyl/asparaginyl beta-hydroxylase in tumor cell lines and human tissues. Oncol Rep. 24:1257–1264. 2010.PubMed/NCBI | |
Ince N, de La Monte SM and Wands JR: Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation. Cancer Res. 60:1261–1266. 2000.PubMed/NCBI | |
Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, Wan X, Li J, Jiao B, Liu J, et al: Hydroxylase activity of ASPH promotes hepatocellular carcinoma metastasis through epithelial-to-mesenchymal transition pathway. EBioMedicine. 31:287–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aihara A, Huang CK, Olsen MJ, Lin Q, Chung W, Tang Q, Dong X and Wands JR: A cell-surface β-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 60:1302–1313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI | |
Avila JL and Kissil JL: Notch signaling in pancreatic cancer: Oncogene or tumor suppressor? Trends Mol Med. 19:320–327. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zang C, Liu XS and Aster JC: The role of notch receptors in transcriptional regulation. J Cell Physiol. 230:982–988. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wharton KA, Johansen KM, Xu T and Artavanis-Tsakonas S: Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 43:567–581. 1985. View Article : Google Scholar : PubMed/NCBI | |
Penton AL, Leonard LD and Spinner NB: Notch signaling in human development and disease. Semin Cell Dev Biol. 23:450–457. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Lin Q, Aihara A, Li Y, Huang CK, Chung W, Tang Q, Chen X, Carlson R, Nadolny C, et al: Aspartate β-hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 6:1231–1248. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cantarini MC, de La Monte SM, Pang M, Tong M, D'Errico A, Trevisani F and Wands JR: Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and Notch signaling mechanisms. Hepatology. 44:446–457. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chung W, Kim M, de la Monte S, Longato L, Carlson R, Slagle BL, Dong X and Wands JR: Activation of signal transduction pathways during hepatic oncogenesis. Cancer Lett. 370:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, et al: ASPH-notch axis guided exosomal delivery of prometastatic secretome renders breast cancer multi-organ metastasis. Mol Cancer. 18:1562019. View Article : Google Scholar : PubMed/NCBI | |
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, et al: Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P, Mayer A and Höckel M: Tumor hypoxia and malignant progression. Methods Enzymol. 381:335–354. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Imanaka N, Chen J and Griffin JD: Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 102:351–360. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lawton M, Tong M, Gundogan F, Wands JR and de La Monte SM: Aspartyl-(asparaginyl) beta-hydroxylase, hypoxia-inducible factor-alpha and Notch cross-talk in regulating neuronal motility. Oxid Med Cell Longev. 3:347–356. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC, Zweifel C, Tolnay M, Wasner M, Mergenthaler S, et al: Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res. 69:458–465. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wagner EF and Nebreda ÁR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI | |
Giorgetti S, Ballotti R, Kowalski-Chauvel A, Tartare S and Van Obberghen E: The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem. 268:7358–7364. 1993.PubMed/NCBI | |
Hermanto U, Zong CS and Wang LH: Inhibition of mitogen-activated protein kinase kinase selectively inhibits cell proliferation in human breast cancer cells displaying enhanced insulin-like growth factor I-mediated mitogen-activated protein kinase activation. Cell Growth Differ. 11:655–664. 2000.PubMed/NCBI | |
Vuori K and Ruoslahti E: Association of insulin receptor substrate-1 with integrins. Science. 266:1576–1578. 1994. View Article : Google Scholar : PubMed/NCBI | |
de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, Carter JJ, Lahousse SA, Califano S, Maeda T, Ueno T, et al: Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness. J Hepatol. 44:971–983. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, Brunsdon H, Berridge G, Picaud S, Fischer R, et al: BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci USA. 115:E8668–E8677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iwagami Y, Huang CK, Olsen MJ, Thomas JM, Jang G, Kim M, Lin Q, Carlson RI, Wagner CE, Dong X and Wands JR: Aspartate β-hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology. 63:1213–1226. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mu CY, Huang JA, Chen Y, Chen C and Zhang XG: High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 28:682–688. 2011. View Article : Google Scholar : PubMed/NCBI | |
Borst J, Ahrends T, Bąbała N, Melief CJM and Kastenmüller W: CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tomimaru Y, Mishra S, Safran H, Charpentier KP, Martin W, De Groot AS, Gregory SH and Wands JR: Aspartate-β-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine. 33:1256–1266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, Lebowitz MS, Fuller S, Biswas B, Stewart S, et al: Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon. 3:e004072017. View Article : Google Scholar : PubMed/NCBI | |
Petrick JL and McGlynn KA: The changing epidemiology of primary liver cancer. Curr Epidemiol Reports. 6:104–111. 2019. View Article : Google Scholar | |
Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, Henley SJ, Holtzman D, Lake A, Noone AM, et al: Annual report to the nation on the status of cancer, 1975–2012, featuring the increasing incidence of liver cancer. Cancer. 122:1312–1337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tomimaru Y, Koga H, Yano H, de la Monte S, Wands JR and Kim M: Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int. 33:1100–1112.. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu J, Yan ZL, Li J, Shi LH, Cong WM, Xia Y, Zou QF, Xi T, Shen F, et al: Overexpression of aspartyl-(asparaginyl)-β-hydroxylase in hepatocellular carcinoma is associated with worse surgical outcome. Hepatology. 52:164–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xue T, Su J, Li H and Xue X: Evaluation of HAAH/humbug quantitative detection in the diagnosis of hepatocellular carcinoma. Oncol Rep. 33:329–337. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao WF, Liu JW and Huang DS: Mir-200a inhibits cell proliferation and EMT by down-regulating the ASPH expression levels and affecting ERK and PI3K/Akt pathways in human hepatoma cells. Am J Transl Res. 10:1117–1130. 2018.PubMed/NCBI | |
Tang C, Hou Y, Wang H, Wang K, Xiang H, Wan X, Xia Y, Li J, Wei W, Xu S, et al: Aspartate β-hydroxylase disrupts mitochondrial DNA stability and function in hepatocellular carcinoma. Oncogenesis. 6:e3622017. View Article : Google Scholar : PubMed/NCBI | |
Shimoda M, Tomimaru Y, Charpentier KP, Safran H, Carlson RI and Wands J: Tumor progression-related transmembrane protein aspartate-β-hydroxylase is a target for immunotherapy of hepatocellular carcinoma. J Hepatol. 56:1129–1135. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW and Scott B: Tumor-specific CD4 + T cells have a major ‘post-licensing’ role in CTL mediated anti-tumor immunity. J Immunol. 165:6047–6055. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kennedy R and Celis E: Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 222:129–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tyson GL and El-Serag HB: Risk factors for cholangiocarcinoma. Hepatology. 54:173–184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weber SM, Jarnagin WR, Klimstra D, DeMatteo RP, Fong Y and Blumgart LH: Intrahepatic cholangiocarcinoma: Resectability, recurrence pattern, and outcomes. J Am Coll Surg. 193:384–391. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maeda T, Taguchi K, Aishima S, Shimada M, Hintz D, Larusso N, Gores G, Tsuneyoshi M, Sugimachi K, Wands JR and de la Monte SM: Clinicopathological correlates of aspartyl (asparaginyl) beta-hydroxylase over-expression in cholangiocarcinoma. Cancer Detect Prev. 28:313–318. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yoo HJ, Yun BR, Kwon JH, Ahn HS, Seol MA, Lee MJ, Yu GR, Yu HC, Hong B, Choi K and Kim DG: Genetic and expression alterations in association with the sarcomatous change of cholangiocarcinoma cells. Exp Mol Med. 41:102–115. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang CK, Iwagami Y, Aihara A, Chung W, de la Monte S, Thomas JM, Olsen M, Carlson R, Yu T, Dong X and Wands J: Anti-tumor effects of second generation β-hydroxylase inhibitors on cholangiocarcinoma development and progression. PLoS One. 11:e01503362016. View Article : Google Scholar : PubMed/NCBI | |
Sugimachi K, Aishima S, Taguchi K, Tanaka S, Shimada M, Kajiyama K, Sugimachi K and Tsuneyoshi M: The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma. J Hepatol. 35:74–79. 2001. View Article : Google Scholar : PubMed/NCBI | |
Noda T, Shimoda M, Ortiz V, Sirica AE and Wands JR: Immunization with aspartate-β-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma. Hepatology. 55:86–97. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang CK, Iwagami Y, Zou J, Casulli S, Lu S, Nagaoka K, Ji C, Ogawa K, Cao KY, Gao JS, et al: Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 429:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giacinti C and Giordano A: RB and cell cycle progression. Oncogene. 25:5220–5227. 2006. View Article : Google Scholar : PubMed/NCBI | |
Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716. 2003. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, et al: Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol. 12:1442019. View Article : Google Scholar : PubMed/NCBI | |
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, et al: Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett. 481:63–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jove R and Hanafusa H: Cell transformation by the viral src oncogene. Annu Rev Cell Biol. 3:31–56. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B and Bai X: Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci. 18:297–304. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, Carlson RI, Jiang ZG, Fuller S, Lebowitz MS, et al: Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 449:87–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Benelli R, Costa D, Mastracci L, Grillo F, Olsen MJ, Barboro P, Poggi A and Ferrari N: Aspartate-β-hydroxylase: A promising target to limit the local invasiveness of colorectal cancer. Cancers (Basel). 12:9712020. View Article : Google Scholar | |
Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, Wouters VM, Roper J, Kendall TJ, Roxburgh CS, et al: Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell. 36:319–336.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Kageyama S, Fukuoka J, Nagata T, et al: Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res. 69:7357–7365. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shimoda M, Hori A, Wands JR, Tsunashima R, Naoi Y, Miyake T, Tanei T, Kagara N, Shimazu K, Kim SJ and Noguchi S: Endocrine sensitivity of estrogen receptor-positive breast cancer is negatively correlated with aspartate-β-hydroxylase expression. Cancer Sci. 108:2454–2461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wirsching HG, Galanis E and Weller M: Glioblastoma. Handb Clin Neurol. 134:381–397. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhao C, Guo B, Zhao Z, Wang H and Fang Z: Systematic profiling of alternative mRNA splicing signature for predicting glioblastoma prognosis. Front Oncol. 9:9282019. View Article : Google Scholar : PubMed/NCBI | |
Sturla LM, Tong M, Hebda N, Gao J, Thomas JM, Olsen M and de la Monte SM: Aspartate-β-hydroxylase (ASPH): A potential therapeutic target in human malignant gliomas. Heliyon. 2:e002032016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Jin P, Tang H and Zhang L: miR-135a acts as a tumor suppressor by targeting ASPH in endometrial cancer. Int J Clin Exp Pathol. 12:3384–3389. 2019.PubMed/NCBI | |
Lahousse SA, Carter JJ, Xu XJ, Wands JR and de la Monte SM: Differential growth factor regulation of aspartyl-(asparaginyl)-β-hydroxylase family genes in SH-Sy5y human neuroblastoma cells. BMC Cell Biol. 7:412006. View Article : Google Scholar : PubMed/NCBI | |
Sepe PS, Lahousse SA, Gemelli B, Chang H, Maeda T, Wands JR and de la Monte SM: Role of the aspartyl-asparaginyl-beta-hydroxylase gene in neuroblastoma cell motility. Lab Invest. 82:881–891. 2002. View Article : Google Scholar : PubMed/NCBI | |
Luu M, Sabo E, de la Monte SM, Greaves W, Wang J, Tavares R, Simao L, Wands JR, Resnick MB and Wang L: Prognostic value of aspartyl (asparaginyl)-beta-hydroxylase/humbug expression in non-small cell lung carcinoma. Hum Pathol. 40:639–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee JH: Overexpression of humbug promotes malignant progression in human gastric cancer cells. Oncol Rep. 19:795–800. 2008.PubMed/NCBI |