|
1
|
Harrell Stewart DR and Clark GJ: Pumping
the brakes on RAS-negative regulators and death effectors of RAS. J
Cell Sci. 133:jcs2388652020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dai Y, Walker SA, de Vet E, Cook S, Welch
HC and Lockyer PJ: Ca2+-dependent monomer and dimer formation
switches CAPRI Protein between Ras GTPase-activating protein (GAP)
and RapGAP activities. J Biol Chem. 286:19905–19916. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sot B, Behrmann E, Raunser S and
Wittinghofer A: Ras GTPase activating (RasGAP) activity of the dual
specificity GAP protein Rasal requires colocalization and C2 domain
binding to lipid membranes. Proc Natl Acad Sci USA. 110:111–116.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jaber Chehayeb R, Stiegler AL and Boggon
TJ: Crystal structures of p120RasGAP N-terminal SH2 domain in its
apo form and in complex with a p190RhoGAP phosphotyrosine peptide.
PLoS One. 14:e02261132019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Henkemeyer M, Rossi DJ, Holmyard DP, Puri
MC, Mbamalu G, Harpal K, Shih TS, Jacks T and Pawson T: Vascular
system defects and neuronal apoptosis in mice lacking ras
GTPase-activating protein. Nature. 377:695–701. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kawasaki J, Aegerter S, Fevurly RD,
Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ and Chan J:
RASA1 functions in EPHB4 signaling pathway to suppress endothelial
mTORC1 activity. J Clin Invest. 124:2774–2784. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hu X, Wang Z, Wu H, Jiang W and Hu R: Ras
ssDNA aptamer inhibits vascular smooth muscle cell proliferation
and migration through MAPK and PI3K pathways. Int J Mol Med.
35:1355–1361. 2015.PubMed/NCBI
|
|
8
|
Lei Z, van Mil A, Brandt MM, Grundmann S,
Hoefer I, Smits M, El Azzouzi H, Fukao T, Cheng C, Doevendans PA,
et al: MicroRNA-132/212 family enhances arteriogenesis after
hindlimb ischaemia through modulation of the Ras-MAPK pathway. J
Cell Mol Med. 19:1994–2005. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Anand S, Majeti BK, Acevedo LM, Murphy EA,
Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN,
Lapinski PE, et al: MicroRNA-132-mediated loss of p120RasGAP
activates the endothelium to facilitate pathological angiogenesis.
Nat Med. 16:909–914. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Norden PR, Kim DJ, Barry DM, Cleaver OB
and Davis GE: Cdc42 and k-ras control endothelial tubulogenesis
through apical membrane and cytoskeletal polarization: Novel
stimulatory roles for GTPase effectors, the small GTPases, Rac2 and
Rap1b, and inhibitory influence of Arhgap31 and Rasa1. PLoS One.
11:e01477582016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen D, Teng JM, North PE, Lapinski PE and
King PD: RASA1-dependent cellular export of collagen IV controls
blood and lymphatic vascular development. J Clin Invest.
130:3545–3561. 2019. View Article : Google Scholar
|
|
12
|
Jing L, Li H, Zhang T, Lu J and Zhong L:
MicroRNA-4530 suppresses cell proliferation and induces apoptosis
by targeting RASA1 in human umbilical vein endothelial cells. Mol
Med Rep. 19:3393–3402. 2019.PubMed/NCBI
|
|
13
|
Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao
L, Yu Y, Huang H, Hu Y, Yang Z, et al: MicroRNA-132, delivered by
mesenchymal stem cell-derived exosomes, promote angiogenesis in
myocardial infarction. Stem Cells Int. 2018:32903722018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lapinski PE, Kwon S, Lubeck BA, Wilkinson
JE, Srinivasan RS, Sevick-Muraca E and King PD: RASA1 maintains the
lymphatic vasculature in a quiescent functional state in mice. J
Clin Invest. 122:733–747. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Roth Flach RJ, Guo CA, Danai LV, Yawe JC,
Gujja S, Edwards YJ and Czech MP: Endothelial Mitogen-activated
protein kinase kinase kinase kinase 4 is critical for lymphatic
vascular development and function. Mol Cell Biol. 36:1740–1749.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lapinski PE, Lubeck BA, Chen D, Doosti A,
Zawieja SD, Davis MJ and King PD: RASA1 regulates the function of
lymphatic vessel valves in mice. J Clin Invest. 127:2569–2585.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Castorena-Gonzalez JA, Srinivasan RS, King
PD, Simon AM and Davis MJ: Simplified method to quantify valve
Back-leak uncovers severe mesenteric lymphatic valve dysfunction in
mice deficient in connexins 43 and 37. J Physiol. 598:2297–23102.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lapinski PE, Qiao Y, Chang CH and King PD:
A role for p120 RasGAP in thymocyte positive selection and survival
of naive T cells. J Immunol. 187:151–163. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pixley FJ, Xiong Y, Yu RY, Sahai EA,
Stanley ER and Ye BH: BCL6 suppresses RhoA activity to alter
macrophage morphology and motility. J Cell Sci. 118:1873–1883.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hancock ML, Preitner N, Quan J and
Flanagan JG: MicroRNA-132 is enriched in developing axons, locally
regulates Rasa1 mRNA, and promotes axon extension. J Neurosci.
34:66–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bros M, Youns M, Kollek V, Buchmüller D,
Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H,
et al: Differentially tolerized mouse antigen presenting cells
share a common miRNA signature including enhanced mmu-miR-223-3p
expression which is sufficient to imprint a protolerogenic state.
Front Pharmacol. 9:9152018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schauer SN, Sontakke SD, Watson ED,
Esteves CL and Donadeu FX: Involvement of miRNAs in equine follicle
development. Reproduction. 146:273–282. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang J and Ruan K: miR-335 is involved in
the rat epididymal development by targeting the mRNA of RASA1.
Biochem Biophys Res Commun. 402:222–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li X, Li D, Wikstrom JD, Pivarcsi A,
Sonkoly E, Ståhle M and Landén NX: MicroRNA-132 promotes fibroblast
migration via regulating RAS p21 protein activator 1 in skin wound
healing. Sci Rep. 7:77972017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shi J, Ma X, Su Y, Song Y, Tian Y, Yuan S,
Zhang X, Yang D, Zhang H, Shuai J, et al: MiR-31 mediates
inflammatory signaling to promote re-epithelialization during skin
wound healing. J Invest Dermatol. 138:2253–2263. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Khalil H, Loukili N, Regamey A,
Cuesta-Marban A, Santori E, Huber M and Widmann C: The
caspase-3-p120-RasGAP module generates a NF-κB repressor in
response to cellular stress. J Cell Sci. 128:3502–3513. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wooderchak-Donahue WL, Johnson P, McDonald
J, Blei F, Berenstein A, Sorscher M, Mayer J, Scheuerle AE, Lewis
T, Grimmer JF, et al: Expanding the clinical and molecular findings
in RASA1 capillary malformation-arteriovenous malformation. Eur J
Hum Genet. 26:1521–1536. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Revencu N, Boon LM, Mendola A, Cordisco
MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E,
et al: RASA1 mutations and associated phenotypes in 68 families
with capillary malformation-arteriovenous malformation. Hum Mutat.
34:1632–1641. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yu J, Streicher JL, Medne L, Krantz ID and
Yan AC: EPHB4 Mutation implicated in capillary
malformation-arteriovenous malformation syndrome: A case report.
Pediatr Dermatol. 34:e227–e230. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Amyere M, Revencu N, Helaers R, Pairet E,
Baselga E, Cordisco M, Chung W, Dubois J, Lacour JP, Martorell L,
et al: Germline Loss-of-function mutations in EPHB4 cause a second
form of capillary Malformation-arteriovenous malformation (CM-AVM2)
Deregulating RAS-MAPK signaling. Circulation. 136:1037–1048. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pérez-Alfayate R, Martínez-Moreno N,
Rosati SD, Moreu-Gamazo M, Pérez-García C and Martínez-Alvarez R:
Klippel-Trenaunay-Weber syndrome associated with multiple cerebral
arteriovenous malformations: Usefulness of Gamma Knife stereotactic
radiosurgery in this syndrome. World Neurosurg. 141:425–429. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Boutarbouch M, Ben Salem D, Giré L, Giroud
M, Béjot Y and Ricolfi F: Multiple cerebral and spinal cord
cavernomas in Klippel-Trenaunay-Weber syndrome. J Clin Neurosci.
17:1073–1075. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Karadag A, Senoglu M, Sayhan S,
Okromelidze L and Middlebrooks EH: Klippel-Trenaunay-Weber syndrome
with atypical presentation of cerebral cavernous angioma: A case
report and literature review. World Neurosurg. 126:354–358. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou Q, Zheng JW, Yang XJ, Wang HJ, Ma D
and Qin ZP: Detection of RASA1 mutations in patients with sporadic
Sturge-Weber syndrome. Childs Nerv Syst. 27:603–607. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kadam SD, Gucek M, Cole RN, Watkins PA and
Comi AM: Cell proliferation and oxidative stress pathways are
modified in fibroblasts from Sturge-Weber syndrome patients. Arch
Dermatol Res. 304:229–235. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chida A, Shintani M, Wakamatsu H, Tsutsumi
Y, Iizuka Y, Kawaguchi N, Furutani Y, Inai K, Nonoyama S and
Nakanishi T: ACVRL1 gene variant in a patient with vein of Galen
aneurysmal malformation. J Pediatr Genet. 2:181–189.
2013.PubMed/NCBI
|
|
37
|
Komiyama M, Miyatake S, Terada A, Ishiguro
T, Ichiba H and Matsumoto N: Vein of Galen aneurysmal malformation
in monozygotic Twin. World Neurosurg. 91:672.e11–e15. 2016.
View Article : Google Scholar
|
|
38
|
Zweier M and Rauch A: The MEF2C-related
and 5q14.3q15 microdeletion syndrome. Mol Syndromol. 2:164–170.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Burrows PE, Gonzalez-Garay ML, Rasmussen
JC, Aldrich MB, Guilliod R, Maus EA, Fife CE, Kwon S, Lapinski PE,
King PD and Sevick-Muraca EM: Lymphatic abnormalities are
associated with RASA1 gene mutations in mouse and man. Proc Natl
Acad Sci USA. 110:8621–8626. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Revencu N, Boon LM, Dompmartin A, Rieu P,
Busch WL, Dubois J, Forzano F, van Hagen JM, Halbach S, Kuechler A,
et al: Germline mutations in RASA1 are not found in patients with
Klippel-trenaunay syndrome or capillary malformation with limb
overgrowth. Mol Syndromol. 4:173–178. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wooderchak-Donahue WL, McDonald J,
O'Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fülöp GT,
Langa C, et al: BMP9 mutations cause a Vascular-anomaly syndrome
with phenotypic overlap with hereditary hemorrhagic telangiectasia.
Am J Hum Genet. 93:530–537. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hernandez F, Huether R, Carter L, Johnston
T, Thompson J, Gossage JR, Chao E and Elliott AM: Mutations in
RASA1 and GDF2 identified in patients with clinical features of
hereditary hemorrhagic telangiectasia. Hum Genome Var. 2:150402015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jin W, Reddy MA, Chen Z, Putta S, Lanting
L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK and Natarajan
R: Small RNA sequencing reveals microRNAs that modulate angiotensin
II effects in vascular smooth muscle cells. J Biol Chem.
287:15672–15683. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Diao X, Shen E, Wang X and Hu B:
Differentially expressed microRNAs and their target genes in the
hearts of streptozotocin-induced diabetic mice. Mol Med Rep.
4:633–640. 2011.PubMed/NCBI
|
|
45
|
Queirós AM, Eschen C, Fliegner D,
Kararigas G, Dworatzek E, Westphal C, Sanchez Ruderisch H and
Regitz-Zagrosek V: Sex- and estrogen-dependent regulation of a
miRNA network in the healthy and hypertrophied heart. Int J
Cardiol. 169:331–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ying W, Tseng A, Chang RC, Morin A, Brehm
T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, et al:
MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative
macrophage activation. J Clin Invest. 125:4149–4159. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nozari A, Aghaei-Moghadam E, Zeinaloo A,
Alavi A, Ghasemi Firouzabdi S, Minaee S, Eskandari Hesari M and
Behjati F: A pathogenic homozygous mutation in the pleckstrin
homology domain of RASA1 is responsible for familial tricuspid
atresia in an Iranian consanguineous family. Cell J. 21:70–77.
2019.PubMed/NCBI
|
|
48
|
Dai X, Yi M, Wang D, Chen Y and Xu X:
Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5
expression in a traumatic brain injury mice model. Biol Chem.
400:753–763. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bijkerk R, de Bruin RG, van Solingen C,
van Gils JM, Duijs JM, van der Veer EP, Rabelink TJ, Humphreys BD
and van Zonneveld AJ: Silencing of microRNA-132 reduces renal
fibrosis by selectively inhibiting myofibroblast proliferation.
Kidney Int. 89:1268–1280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Telegina DV, Korbolina EE, Ershov NI,
Kolosova NG and Kozhevnikova OS: Identification of functional
networks associated with cell death in the retina of OXYS rats
during the development of retinopathy. Cell Cycle. 14:3544–3556.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Falconi G, Fabiani E, Fianchi L, Criscuolo
M, Raffaelli CS, Bellesi S, Hohaus S, Voso MT, D'Alò F and Leone G:
Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow
mesenchymal stem cells isolated from patients with myelodysplastic
syndromes. Exp Hematol. 44:75–83.e1-e14. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang X, Guo H, Xie A, Liao O, Ju F and
Zhou Y: MicroRNA-144 relieves chronic constriction injury-induced
neuropathic pain via targeting RASA1. Biotechnol Appl Biochem.
67:294–302. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ulger C, Toruner GA, Alkan M, Mohammed M,
Damani S, Kang J, Galante A, Aviv H, Soteropoulos P, Tolias PP, et
al: Comprehensive genome-wide comparison of DNA and RNA level scan
using microarray technology for identification of candidate
Cancer-related genes in the HL-60 cell line. Cancer Genet
Cytogenet. 147:28–35. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang XY, Guan M, Vigil D, Der CJ, Lowy DR
and Popescu NC: p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor
protein and inhibits its RhoA GTPase and growth-suppressing
activities. Oncogene. 28:1401–1409. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kamburov A, Lawrence MS, Polak P,
Leshchiner I, Lage K, Golub TR, Lander ES and Getz G: Comprehensive
assessment of cancer missense mutation clustering in protein
structures. Proc Natl Acad Sci USA. 112:E5486–E5495. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li L, Fan Y, Huang X, Luo J, Zhong L, Shu
XS, Lu L, Xiang T, Chan ATC, Yeo W, et al: Tumor suppression of Ras
GTPase-activating protein RASA5 through antagonizing Ras signaling
perturbation in carcinomas. Science. 21:1–18. 2019.
|
|
57
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, Etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu X, Jia Y, Stoopler MB, Shen Y, Cheng
H, Chen J, Mansukhani M, Koul S, Halmos B and Borczuk AC:
Next-generation sequencing of pulmonary sarcomatoid carcinoma
reveals high frequency of actionable MET gene mutations. J Clin
Oncol. 34:794–802. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Campbell JD, Alexandrov A, Kim J, Wala J,
Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et
al: Distinct patterns of somatic genome alterations in lung
adenocarcinomas and squamous cell carcinomas. Nat Genet.
48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu YJ, Xu B and Xia W: Hsa-mir-182
downregulates RASA1 and suppresses lung squamous cell carcinoma
cell proliferation. Clin Lab. 60:155–159. 2014.PubMed/NCBI
|
|
61
|
Shi L, Middleton J, Jeon YJ, Magee P,
Veneziano D, Laganà A, Leong HS, Sahoo S5, Fassan M, Booton R, et
al: KRAS induces lung tumorigenesis through microRNAs modulation.
Cell Death Dis. 9:2192018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H,
Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, et al: Osimertinib plus
savolitinib in patients with EGFR mutation-positive, MET-amplified,
Non-small-cell lung cancer after progression on EGFR tyrosine
kinase inhibitors: Interim results from a multicentre, open-label,
phase 1b study. Lancet Oncol. 21:373–386. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He J, Jin S, Zhang W, Wu D, Li J, Xu J and
Gao W: Long Non-coding RNA LOC554202 promotes acquired gefitinib
resistance in Non-small cell lung cancer through upregulating
miR-31 expression. J Cancer. 10:6003–6013. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hayashi T, Desmeules P, Smith RS, Drilon
A, Somwar R and Ladanyi M: RASA1 and NF1 are preferentially
co-mutated and define a distinct genetic subset of
smoking-associated non-small cell lung carcinomas sensitive to MEK
inhibition. Clin Cancer Res. 24:1436–1447. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kitajima S and Barbie DA: RASA1/NF1-Mutant
lung cancer: Racing to the Clinic? Clin Cancer Res. 24:1243–1245.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kas SM, de Ruiter JR, Schipper K, Schut E,
Bombardelli L, Wientjens E, Drenth AP, de Korte-Grimmerink R,
Mahakena S, Phillips C, et al: Transcriptomics and transposon
mutagenesis identify multiple mechanisms of resistance to the FGFR
Inhibitor AZD4547. Cancer Res. 78:5668–5679. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Crockett SD and Nagtegaal I: Terminology,
molecular features, epidemiology, and management of serrated
colorectal neoplasia. Gastroenterology. 157:949–966. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM
and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kim R, Schell MJ, Teer JK, Greenawalt DM,
Yang M and Yeatman TJ: Co-evolution of somatic variation in primary
and metastatic colorectal cancer may expand biopsy indications in
the molecular era. PLoS One. 10:e01266702015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J,
Zhang CY, Chen J and Zhang J: MicroRNA-31 activates the RAS pathway
and functions as an oncogenic MicroRNA in human colorectal cancer
by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol
Chem. 288:9508–9518. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gong B, Liu WW, Nie WJ, Li DF, Xie ZJ, Liu
C, Liu YH, Mei P and Li ZJ: MiR-21 RASA1 axis affects malignancy of
colon cancer cells via RAS pathways. World J Gastroenterol.
21:1488–1497. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Y, Weng W, Peng J, Hong L, Yang L,
Toiyama Y, Gao R, Liu M, Yin M, Pan C, et al: Fusobacterium
nucleatum increases proliferation of colorectal cancer cells and
tumor development in mice by activating Toll-like receptor 4
signaling to nuclear factor-κB, and Up-regulating expression of
MicroRNA-21. Gastroenterology. 152:851–866.e24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sun D, Wang C, Long S, Ma Y, Guo Y, Huang
Z, Chen X, Zhang C, Chen J and Zhang J: C/EBP-β-activated
microRNA-223 promotes tumour growth through targeting RASA1 in
human colorectal cancer. Br J Cancer. 112:1491–1500. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lu Y, Yang H, Yuan L, Liu G, Zhang C, Hong
M, Liu Y, Zhou M, Chen F and Li X: Overexpression of miR-335
confers cell proliferation and tumour growth to colorectal
carcinoma cells. Mol Cell Biochem. 412:235–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Antoine-Bertrand J, Duquette PM, Alchini
R, Kennedy TE, Fournier AE and Lamarche-Vane N: p120RasGAP protein
mediates Netrin-1 protein-induced cortical axon outgrowth and
guidance. J Biol Chem. 291:4589–4602. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yarom N, Gresham G, Boame N and Jonker D:
KRAS status as a predictor of chemotherapy activity in patients
with metastatic colorectal cancer. Clin Colorectal Cancer.
18:e309–e315. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Organ SL, Hai J, Radulovich N, Marshall
CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, et
al: p120RasGAP is a mediator of rho pathway activation and
tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One.
9:e861032014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Post JB, Hami N, Mertens AEE, Elfrink S,
Bos JL and Snippert HJG: CRISPR-induced RASGAP deficiencies in
colorectal cancer organoids reveal that only loss of NF1 promotes
resistance to EGFR inhibition. Oncotarget. 10:1440–1457. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McGlynn KA, Petrick JL and El-Serag HB:
Epidemiology of hepatocellular carcinoma. Hepatology. Apr
22–2020.(Epub ahead of print). View Article : Google Scholar
|
|
81
|
Calvisi DF, Ladu S, Conner EA, Seo D,
Hsieh JT, Factor VM and Thorgeirsson SS: Inactivation of Ras
GTPase-activating proteins promotes unrestrained activity of
wild-type Ras in human liver cancer. J Hepatol. 54:311–319. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen YL, Huang WC, Yao HL, Chen PM, Lin
PY, Feng FY and Chu PY: Down-regulation of RASA1 is associated with
poor prognosis in human hepatocellular carcinoma. Anticancer Res.
37:781–785. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hu C, Huang F, Deng G, Nie W, Huang W and
Zeng X: miR-31 promotes oncogenesis in intrahepatic
cholangiocarcinoma cells via the direct suppression of RASA1. Exp
Ther Med. 6:1265–1270. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C,
Gyabaah OA, Xie H, Zhou L, Wu J and Zheng S: Hypoxia-inducible
MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular
carcinoma. J Exp Clin Cancer Res. 34:672015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH,
Shiau CW, Huang JW, Tsai MH and Chen KF: Protein tyrosine
phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in
hepatocellular carcinoma. Hepatology. 63:1528–1543. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Vanli G, Sempoux C and Widmann C: The
caspase-3/p120 RasGAP Stress-sensing module reduces liver cancer
incidence but does not affect overall survival in gamma-irradiated
and carcinogen-treated mice. Mol Carcinog. 56:1680–1684. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sancho-Garnier H and Colonna M: Breast
cancer epidemiology. Presse Med. 48:1076–1084. 2019.(In French).
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Suárez-Cabrera C, Quintana RM, Bravo A,
Casanova ML, Page A, Alameda JP, Paramio JM, Maroto A, Salamanca J,
Dupuy AJ, et al: A transposon-based analysis reveals RASA1 is
involved in triple-negative breast cancer. Cancer Res.
77:1357–1368. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hu X, Stern HM, Ge L, O'Brien C, Haydu L,
Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC, et al: Genetic
alterations and oncogenic pathways associated with breast cancer
subtypes. Mol Cancer Res. 7:511–522. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu Y, Liu T, Sun Q, Niu M, Jiang Y and
Pang D: Downregulation of Ras GTPase activating protein 1 is
associated with poor survival of breast invasive ductal carcinoma
patients. Oncol Rep. 33:119–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Huang J, Peng X, Zhang K, Li C, Su B,
Zhang Y and Yu W: Co-expression and significance of Dok2 and Ras
p21 protein activator 1 in breast cancer. Oncol Lett. 14:5386–5392.
2017.PubMed/NCBI
|
|
92
|
Sharma SB, Lin CC, Farrugia MK, McLaughlin
SL, Ellis EJ, Brundage KM, Salkeni MA and Ruppert JM: MicroRNAs 206
and 21 cooperate to promote RAS-extracellular signal-regulated
kinase signaling by suppressing the translation of RASA1 and
SPRED1. Mol Cell Biol. 34:4143–4164. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xiao W, Zheng S, Zou Y, Yang A and Xie X,
Tang H and Xie X: CircAHNAK1 inhibits proliferation and metastasis
of Triple-negative breast cancer by modulating miR-421 and RASA1.
Aging (Albany NY). 11:12043–12056. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kanwar N, Carmine-Simmen K, Nair R, Wang
C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang
J, et al: Amplification of a calcium channel subunit CACNG4
increases breast cancer metastasis. EBioMedicine. 52:1026462020.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang L, Zhan X, Yan D and Wang Z:
Circulating: MicroRNA-21 is involved in lymph node metastasis in
cervical cancer by targeting RASA1. Int J Gynecol Cancer.
26:810–816. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hu J, Wang L, Chen J, Gao H, Zhao W, Huang
Y, Jiang T, Zhou J and Chen Y: The circular RNA circ-ITCH
suppresses ovarian carcinoma progression through targeting
miR-145/RASA1 signaling. Biochem Biophys Res Commun. 505:222–228.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jiang X, Tang H and Chen T: Epidemiology
of gynecologic cancers in China. J Gynecol Oncol. 29:e72018.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lubeck BA, Lapinski PE, Oliver JA, Ksionda
O, Parada LF, Zhu Y, Maillard I, Chiang M, Roose J and King PD:
GTPase-activating proteins (RasGAPs) Neurofibromin 1 and p120
RasGAP in T cells results in the development of T cell acute
lymphoblastic Leukemia. J Immunol. 195:31–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao
QL, Wu W and Wu XZ: MiR-223 suppresses cell proliferation by
targeting IGF-1R. PLoS One. 6:e270082016. View Article : Google Scholar
|
|
100
|
Ng JH, Iyer NG, Tan MH and Edgren G:
Changing epidemiology of oral squamous cell carcinoma of the
tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Krishnan N, Gupta S, Palve V, Varghese L,
Pattnaik S, Jain P, Khyriem C, Hariharan A, Dhas K, Nair J, et al:
Integrated analysis of oral tongue squamous cell carcinoma
identifies key variants and pathways linked to risk habits, HPV,
clinical parameters and tumor recurrence. F1000Res. 4:12152015.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu
CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of
oral squamous cell carcinoma reveals molecular subgroups and novel
therapeutic opportunities. Theranostics. 7:1088–1099. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Wang M, Wu Q, Zhu Q, Jiao Y, Zhu
Y, Yang B, Ni S, Yu J, Sun H and Zeng YX: Mutational signatures and
the genomic landscape of betel quid Chewing-associated tongue
carcinoma. Cancer Med. 8:701–711. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang J, Wang W, Li J, Wu L, Song M and
Meng Q: miR182 activates the Ras-MEK-ERK pathway in human oral
cavity squamous cell carcinoma by suppressing RASA1 and SPRED1.
Onco Targets Ther. 10:667–679. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mizrahi JD, Surana R, Valle JW and Shroff
RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rajamani D and Bhasin MK: Identification
of key regulators of pancreatic cancer progression through
multidimensional systems-level analysis. Genome Med. 8:382016.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kent OA, Mendell JT and Rottapel R:
Transcriptional regulation of miR-31 by oncogenic KRAS mediates
metastatic phenotypes by repressing RASA1. Mol Cancer Res.
14:267–277. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Culp MB, Soerjomataram I, Efstathiou JA,
Bray F and Jemal A: Recent global patterns in prostate cancer
incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sowalsky AG, Xia Z, Wang L, Zhao H, Chen
S, Bubley GJ, Balk SP and Li W: Whole transcriptome sequencing
reveals extensive unspliced mRNA in metastatic castration-resistant
prostate cancer. Mol Cancer Res. 13:98–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Berndt SI, Wang Z, Yeager M, Alavanja MC,
Albanes D, Amundadottir L, Andriole G, Beane Freeman L, Campa D,
Cancel-Tassin G, et al: Two susceptibility loci identified for
prostate cancer aggressiveness. Nat Commun. 6:68892015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Laczny C, Leidinger P, Haas J, Ludwig N,
Backes C, Gerasch A, Kaufmann M, Vogel B, Katus HA, Meder B, et al:
miRTrail-a comprehensive webserver for analyzing gene and miRNA
patterns to enhance the understanding of regulatory mechanisms in
diseases. BMC Bioinformatics. 13:362012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sung H, Kanchi KL, Wang X, Hill KS,
Messina JL, Lee JH, Kim Y, Dees ND, Ding L, Teer JK, et al:
Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras
activation. Oncotarget. 7:23885–23996. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Rusinek D, Swierniak M, Chmielik E, Kowal
M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J,
Chekan M, et al: BRAFV600E-associated gene expression profile:
Early changes in the transcriptome, based on a transgenic mouse
model of papillary thyroid carcinoma. PLoS One. 10:e01436882015.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Park C, Ha SY, Kim ST, Kim HC, Heo JS,
Park YS, Lauwers G, Lee J and Kim KM: Identification of the BRAF
V600E mutation in gastroenteropancreatic neuroendocrine tumors.
Oncotarget. 7:4024–4035. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang RL, Yang JP, Peng LX, Zheng LS, Xie
P, Wang MY, Cao Y, Zhang ZL, Zhou FJ, Qian CN and Bao YX:
RNA-binding protein QKI-5 inhibits the proliferation of clear cell
renal cell carcinoma via post-transcriptional stabilization of
RASA1 mRNA. Cell Cycle. 15:3094–3104. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang RL, Aimudula A, Dai JH and Bao YX:
RASA1 inhibits the progression of renal cell carcinoma by
decreasing the expression of miR-223-3p and promoting the
expression of FBXW7. Biosci Rep. 40:BSR201941432020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang
Y, Zhou J, Pan K, Sun L, Fang J, et al: A global burden of gastric
cancer: The major impact of China. Expert Rev Gastroenterol
Hepatol. 11:651–661. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li Z, Li D, Zhang G, Xiong J, Jie Z, Cheng
H, Cao Y, Jiang M, Lin L, Le Z, et al: Methylation-associated
silencing of MicroRNA-335 contributes tumor cell invasion and
migration by interacting with RASA1 in gastric cancer. Am J Cancer
Res. 4:648–662. 2014.PubMed/NCBI
|
|
119
|
Chen X, Cai S, Li B, Zhang X, Li W, Liang
H, Cao X, Wang L and Wu Z: MicroRNA-21 regulates the biological
behavior of esophageal squamous cell carcinoma by targeting RASA1.
Oncol Rep. 41:1627–1637. 2019.PubMed/NCBI
|
|
120
|
Pickering CR, Zhou JH, Lee JJ, Drummond
JA, Peng SA, Saade RE, Tsai KY, Curry JL, Tetzlaff MT, Lai SY, et
al: Mutational landscape of aggressive cutaneous squamous cell
carcinoma. Clin Cancer Res. 20:6582–6592. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Jouenne F, Reger de Moura C, Lorillon G,
Meignin V, Dumaz N, Lebbe C6 Mourah S and Tazi A: RASA1 loss in a
BRAF-mutated Langerhans cell sarcoma: A mechanism of resistance to
BRAF inhibitor. Ann Oncol. 30:1170–1172. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sears R and Gray JW: Epigenomic
inactivation of RasGAPs activates RAS signaling in a subset of
luminal b breast cancers. Cancer Discov. 7:131–133. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Degirmenci U, Wang M and Hu J: Targeting
Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells.
9:1982020. View Article : Google Scholar
|
|
124
|
Hoxhaj G and Manning BD: The PI3K-AKT
network at the interface of oncogenic signalling and cancer
metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Markou A, Zavridou M and Lianidou ES:
miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer
(Auckl). 7:19–27. 2016.PubMed/NCBI
|
|
126
|
Revencu N, Fastre E, Ravoet M, Helaers R,
Brouillard P, Bisdorff-Bresson A, Chung CWT, Gerard M, Dvorakova V,
Irvine AD, et al: RASA1 mosaic mutations in patients with capillary
malformation-arteriovenous malformation. J Med Genet. 57:48–52.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Liu Z, Deng M, Wu L and Zhang S: An
integrative investigation on significant mutations and their
down-stream pathways in lung squamous cell carcinoma reveals
CUL3/KEAP1/NRF2 relevant subtypes. Mol Med. 26:482020. View Article : Google Scholar : PubMed/NCBI
|