Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of RASA1 in cancer: A review and update (Review)

  • Authors:
    • Yanhua Zhang
    • Yue Li
    • Quanyue Wang
    • Bo Su
    • Hui Xu
    • Yang Sun
    • Pei Sun
    • Rumeng Li
    • Xiaochun Peng
    • Jun Cai
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China, Qinghai Institute of Health Sciences, Xining, Qinghai 810000, P.R. China, Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2386-2396
    |
    Published online on: October 13, 2020
       https://doi.org/10.3892/or.2020.7807
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ras p21 protein activator 1 (RASA1) is a regulator of Ras GDP and GTP and is involved in numerous physiological processes such as angiogenesis, cell proliferation, and apoptosis. As a result, RASA1 also contributes to pathological processes in vascular diseases and tumour formation. This review focuses on the role of RASA1 in multiple tumours types in the lung, intestines, liver, and breast. Furthermore, we discuss the potential mechanisms of RASA1 and its downstream effects through Ras/RAF/MEK/ERK or Ras/PI3K/AKT signalling. Moreover, miRNAs are capable of regulating RASA1 and could be a novel targeted treatment strategy for tumours.
View Figures

Figure 1

Figure 2

View References

1 

Harrell Stewart DR and Clark GJ: Pumping the brakes on RAS-negative regulators and death effectors of RAS. J Cell Sci. 133:jcs2388652020. View Article : Google Scholar : PubMed/NCBI

2 

Dai Y, Walker SA, de Vet E, Cook S, Welch HC and Lockyer PJ: Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J Biol Chem. 286:19905–19916. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Sot B, Behrmann E, Raunser S and Wittinghofer A: Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes. Proc Natl Acad Sci USA. 110:111–116. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Jaber Chehayeb R, Stiegler AL and Boggon TJ: Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLoS One. 14:e02261132019. View Article : Google Scholar : PubMed/NCBI

5 

Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T and Pawson T: Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature. 377:695–701. 1995. View Article : Google Scholar : PubMed/NCBI

6 

Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ and Chan J: RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest. 124:2774–2784. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Hu X, Wang Z, Wu H, Jiang W and Hu R: Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways. Int J Mol Med. 35:1355–1361. 2015.PubMed/NCBI

8 

Lei Z, van Mil A, Brandt MM, Grundmann S, Hoefer I, Smits M, El Azzouzi H, Fukao T, Cheng C, Doevendans PA, et al: MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med. 19:1994–2005. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, et al: MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 16:909–914. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Norden PR, Kim DJ, Barry DM, Cleaver OB and Davis GE: Cdc42 and k-ras control endothelial tubulogenesis through apical membrane and cytoskeletal polarization: Novel stimulatory roles for GTPase effectors, the small GTPases, Rac2 and Rap1b, and inhibitory influence of Arhgap31 and Rasa1. PLoS One. 11:e01477582016. View Article : Google Scholar : PubMed/NCBI

11 

Chen D, Teng JM, North PE, Lapinski PE and King PD: RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest. 130:3545–3561. 2019. View Article : Google Scholar

12 

Jing L, Li H, Zhang T, Lu J and Zhong L: MicroRNA-4530 suppresses cell proliferation and induces apoptosis by targeting RASA1 in human umbilical vein endothelial cells. Mol Med Rep. 19:3393–3402. 2019.PubMed/NCBI

13 

Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, Yu Y, Huang H, Hu Y, Yang Z, et al: MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018:32903722018. View Article : Google Scholar : PubMed/NCBI

14 

Lapinski PE, Kwon S, Lubeck BA, Wilkinson JE, Srinivasan RS, Sevick-Muraca E and King PD: RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J Clin Invest. 122:733–747. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Roth Flach RJ, Guo CA, Danai LV, Yawe JC, Gujja S, Edwards YJ and Czech MP: Endothelial Mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function. Mol Cell Biol. 36:1740–1749. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ and King PD: RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest. 127:2569–2585. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Castorena-Gonzalez JA, Srinivasan RS, King PD, Simon AM and Davis MJ: Simplified method to quantify valve Back-leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37. J Physiol. 598:2297–23102. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Lapinski PE, Qiao Y, Chang CH and King PD: A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J Immunol. 187:151–163. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Pixley FJ, Xiong Y, Yu RY, Sahai EA, Stanley ER and Ye BH: BCL6 suppresses RhoA activity to alter macrophage morphology and motility. J Cell Sci. 118:1873–1883. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Hancock ML, Preitner N, Quan J and Flanagan JG: MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci. 34:66–78. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, et al: Differentially tolerized mouse antigen presenting cells share a common miRNA signature including enhanced mmu-miR-223-3p expression which is sufficient to imprint a protolerogenic state. Front Pharmacol. 9:9152018. View Article : Google Scholar : PubMed/NCBI

22 

Schauer SN, Sontakke SD, Watson ED, Esteves CL and Donadeu FX: Involvement of miRNAs in equine follicle development. Reproduction. 146:273–282. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Wang J and Ruan K: miR-335 is involved in the rat epididymal development by targeting the mRNA of RASA1. Biochem Biophys Res Commun. 402:222–227. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Li X, Li D, Wikstrom JD, Pivarcsi A, Sonkoly E, Ståhle M and Landén NX: MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Sci Rep. 7:77972017. View Article : Google Scholar : PubMed/NCBI

25 

Shi J, Ma X, Su Y, Song Y, Tian Y, Yuan S, Zhang X, Yang D, Zhang H, Shuai J, et al: MiR-31 mediates inflammatory signaling to promote re-epithelialization during skin wound healing. J Invest Dermatol. 138:2253–2263. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Khalil H, Loukili N, Regamey A, Cuesta-Marban A, Santori E, Huber M and Widmann C: The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress. J Cell Sci. 128:3502–3513. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, Mayer J, Scheuerle AE, Lewis T, Grimmer JF, et al: Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet. 26:1521–1536. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E, et al: RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 34:1632–1641. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yu J, Streicher JL, Medne L, Krantz ID and Yan AC: EPHB4 Mutation implicated in capillary malformation-arteriovenous malformation syndrome: A case report. Pediatr Dermatol. 34:e227–e230. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, Chung W, Dubois J, Lacour JP, Martorell L, et al: Germline Loss-of-function mutations in EPHB4 cause a second form of capillary Malformation-arteriovenous malformation (CM-AVM2) Deregulating RAS-MAPK signaling. Circulation. 136:1037–1048. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Pérez-Alfayate R, Martínez-Moreno N, Rosati SD, Moreu-Gamazo M, Pérez-García C and Martínez-Alvarez R: Klippel-Trenaunay-Weber syndrome associated with multiple cerebral arteriovenous malformations: Usefulness of Gamma Knife stereotactic radiosurgery in this syndrome. World Neurosurg. 141:425–429. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Boutarbouch M, Ben Salem D, Giré L, Giroud M, Béjot Y and Ricolfi F: Multiple cerebral and spinal cord cavernomas in Klippel-Trenaunay-Weber syndrome. J Clin Neurosci. 17:1073–1075. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Karadag A, Senoglu M, Sayhan S, Okromelidze L and Middlebrooks EH: Klippel-Trenaunay-Weber syndrome with atypical presentation of cerebral cavernous angioma: A case report and literature review. World Neurosurg. 126:354–358. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Zhou Q, Zheng JW, Yang XJ, Wang HJ, Ma D and Qin ZP: Detection of RASA1 mutations in patients with sporadic Sturge-Weber syndrome. Childs Nerv Syst. 27:603–607. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Kadam SD, Gucek M, Cole RN, Watkins PA and Comi AM: Cell proliferation and oxidative stress pathways are modified in fibroblasts from Sturge-Weber syndrome patients. Arch Dermatol Res. 304:229–235. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Chida A, Shintani M, Wakamatsu H, Tsutsumi Y, Iizuka Y, Kawaguchi N, Furutani Y, Inai K, Nonoyama S and Nakanishi T: ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation. J Pediatr Genet. 2:181–189. 2013.PubMed/NCBI

37 

Komiyama M, Miyatake S, Terada A, Ishiguro T, Ichiba H and Matsumoto N: Vein of Galen aneurysmal malformation in monozygotic Twin. World Neurosurg. 91:672.e11–e15. 2016. View Article : Google Scholar

38 

Zweier M and Rauch A: The MEF2C-related and 5q14.3q15 microdeletion syndrome. Mol Syndromol. 2:164–170. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Burrows PE, Gonzalez-Garay ML, Rasmussen JC, Aldrich MB, Guilliod R, Maus EA, Fife CE, Kwon S, Lapinski PE, King PD and Sevick-Muraca EM: Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci USA. 110:8621–8626. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Revencu N, Boon LM, Dompmartin A, Rieu P, Busch WL, Dubois J, Forzano F, van Hagen JM, Halbach S, Kuechler A, et al: Germline mutations in RASA1 are not found in patients with Klippel-trenaunay syndrome or capillary malformation with limb overgrowth. Mol Syndromol. 4:173–178. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fülöp GT, Langa C, et al: BMP9 mutations cause a Vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 93:530–537. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Hernandez F, Huether R, Carter L, Johnston T, Thompson J, Gossage JR, Chao E and Elliott AM: Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia. Hum Genome Var. 2:150402015. View Article : Google Scholar : PubMed/NCBI

43 

Jin W, Reddy MA, Chen Z, Putta S, Lanting L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK and Natarajan R: Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem. 287:15672–15683. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Diao X, Shen E, Wang X and Hu B: Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Mol Med Rep. 4:633–640. 2011.PubMed/NCBI

45 

Queirós AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E, Westphal C, Sanchez Ruderisch H and Regitz-Zagrosek V: Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int J Cardiol. 169:331–338. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, et al: MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 125:4149–4159. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Nozari A, Aghaei-Moghadam E, Zeinaloo A, Alavi A, Ghasemi Firouzabdi S, Minaee S, Eskandari Hesari M and Behjati F: A pathogenic homozygous mutation in the pleckstrin homology domain of RASA1 is responsible for familial tricuspid atresia in an Iranian consanguineous family. Cell J. 21:70–77. 2019.PubMed/NCBI

48 

Dai X, Yi M, Wang D, Chen Y and Xu X: Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem. 400:753–763. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Bijkerk R, de Bruin RG, van Solingen C, van Gils JM, Duijs JM, van der Veer EP, Rabelink TJ, Humphreys BD and van Zonneveld AJ: Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int. 89:1268–1280. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Telegina DV, Korbolina EE, Ershov NI, Kolosova NG and Kozhevnikova OS: Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy. Cell Cycle. 14:3544–3556. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Falconi G, Fabiani E, Fianchi L, Criscuolo M, Raffaelli CS, Bellesi S, Hohaus S, Voso MT, D'Alò F and Leone G: Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol. 44:75–83.e1-e14. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Zhang X, Guo H, Xie A, Liao O, Ju F and Zhou Y: MicroRNA-144 relieves chronic constriction injury-induced neuropathic pain via targeting RASA1. Biotechnol Appl Biochem. 67:294–302. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Ulger C, Toruner GA, Alkan M, Mohammed M, Damani S, Kang J, Galante A, Aviv H, Soteropoulos P, Tolias PP, et al: Comprehensive genome-wide comparison of DNA and RNA level scan using microarray technology for identification of candidate Cancer-related genes in the HL-60 cell line. Cancer Genet Cytogenet. 147:28–35. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Yang XY, Guan M, Vigil D, Der CJ, Lowy DR and Popescu NC: p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene. 28:1401–1409. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, Lander ES and Getz G: Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci USA. 112:E5486–E5495. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Li L, Fan Y, Huang X, Luo J, Zhong L, Shu XS, Lu L, Xiang T, Chan ATC, Yeo W, et al: Tumor suppression of Ras GTPase-activating protein RASA5 through antagonizing Ras signaling perturbation in carcinomas. Science. 21:1–18. 2019.

57 

Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, Etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, Mansukhani M, Koul S, Halmos B and Borczuk AC: Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 34:794–802. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Zhu YJ, Xu B and Xia W: Hsa-mir-182 downregulates RASA1 and suppresses lung squamous cell carcinoma cell proliferation. Clin Lab. 60:155–159. 2014.PubMed/NCBI

61 

Shi L, Middleton J, Jeon YJ, Magee P, Veneziano D, Laganà A, Leong HS, Sahoo S5, Fassan M, Booton R, et al: KRAS induces lung tumorigenesis through microRNAs modulation. Cell Death Dis. 9:2192018. View Article : Google Scholar : PubMed/NCBI

62 

Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, et al: Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, Non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21:373–386. 2020. View Article : Google Scholar : PubMed/NCBI

63 

He J, Jin S, Zhang W, Wu D, Li J, Xu J and Gao W: Long Non-coding RNA LOC554202 promotes acquired gefitinib resistance in Non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 10:6003–6013. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Hayashi T, Desmeules P, Smith RS, Drilon A, Somwar R and Ladanyi M: RASA1 and NF1 are preferentially co-mutated and define a distinct genetic subset of smoking-associated non-small cell lung carcinomas sensitive to MEK inhibition. Clin Cancer Res. 24:1436–1447. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Kitajima S and Barbie DA: RASA1/NF1-Mutant lung cancer: Racing to the Clinic? Clin Cancer Res. 24:1243–1245. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Kas SM, de Ruiter JR, Schipper K, Schut E, Bombardelli L, Wientjens E, Drenth AP, de Korte-Grimmerink R, Mahakena S, Phillips C, et al: Transcriptomics and transposon mutagenesis identify multiple mechanisms of resistance to the FGFR Inhibitor AZD4547. Cancer Res. 78:5668–5679. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Crockett SD and Nagtegaal I: Terminology, molecular features, epidemiology, and management of serrated colorectal neoplasia. Gastroenterology. 157:949–966. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Kim R, Schell MJ, Teer JK, Greenawalt DM, Yang M and Yeatman TJ: Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS One. 10:e01266702015. View Article : Google Scholar : PubMed/NCBI

70 

Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J and Zhang J: MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem. 288:9508–9518. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Gong B, Liu WW, Nie WJ, Li DF, Xie ZJ, Liu C, Liu YH, Mei P and Li ZJ: MiR-21 RASA1 axis affects malignancy of colon cancer cells via RAS pathways. World J Gastroenterol. 21:1488–1497. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, et al: Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and Up-regulating expression of MicroRNA-21. Gastroenterology. 152:851–866.e24. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Sun D, Wang C, Long S, Ma Y, Guo Y, Huang Z, Chen X, Zhang C, Chen J and Zhang J: C/EBP-β-activated microRNA-223 promotes tumour growth through targeting RASA1 in human colorectal cancer. Br J Cancer. 112:1491–1500. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Lu Y, Yang H, Yuan L, Liu G, Zhang C, Hong M, Liu Y, Zhou M, Chen F and Li X: Overexpression of miR-335 confers cell proliferation and tumour growth to colorectal carcinoma cells. Mol Cell Biochem. 412:235–245. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Antoine-Bertrand J, Duquette PM, Alchini R, Kennedy TE, Fournier AE and Lamarche-Vane N: p120RasGAP protein mediates Netrin-1 protein-induced cortical axon outgrowth and guidance. J Biol Chem. 291:4589–4602. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Yarom N, Gresham G, Boame N and Jonker D: KRAS status as a predictor of chemotherapy activity in patients with metastatic colorectal cancer. Clin Colorectal Cancer. 18:e309–e315. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, et al: p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One. 9:e861032014. View Article : Google Scholar : PubMed/NCBI

78 

Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL and Snippert HJG: CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget. 10:1440–1457. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

80 

McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. Apr 22–2020.(Epub ahead of print). View Article : Google Scholar

81 

Calvisi DF, Ladu S, Conner EA, Seo D, Hsieh JT, Factor VM and Thorgeirsson SS: Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J Hepatol. 54:311–319. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Chen YL, Huang WC, Yao HL, Chen PM, Lin PY, Feng FY and Chu PY: Down-regulation of RASA1 is associated with poor prognosis in human hepatocellular carcinoma. Anticancer Res. 37:781–785. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Hu C, Huang F, Deng G, Nie W, Huang W and Zeng X: miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med. 6:1265–1270. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J and Zheng S: Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:672015. View Article : Google Scholar : PubMed/NCBI

85 

Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH and Chen KF: Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology. 63:1528–1543. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Vanli G, Sempoux C and Widmann C: The caspase-3/p120 RasGAP Stress-sensing module reduces liver cancer incidence but does not affect overall survival in gamma-irradiated and carcinogen-treated mice. Mol Carcinog. 56:1680–1684. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Sancho-Garnier H and Colonna M: Breast cancer epidemiology. Presse Med. 48:1076–1084. 2019.(In French). View Article : Google Scholar : PubMed/NCBI

88 

Suárez-Cabrera C, Quintana RM, Bravo A, Casanova ML, Page A, Alameda JP, Paramio JM, Maroto A, Salamanca J, Dupuy AJ, et al: A transposon-based analysis reveals RASA1 is involved in triple-negative breast cancer. Cancer Res. 77:1357–1368. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Hu X, Stern HM, Ge L, O'Brien C, Haydu L, Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC, et al: Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res. 7:511–522. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Liu Y, Liu T, Sun Q, Niu M, Jiang Y and Pang D: Downregulation of Ras GTPase activating protein 1 is associated with poor survival of breast invasive ductal carcinoma patients. Oncol Rep. 33:119–124. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Huang J, Peng X, Zhang K, Li C, Su B, Zhang Y and Yu W: Co-expression and significance of Dok2 and Ras p21 protein activator 1 in breast cancer. Oncol Lett. 14:5386–5392. 2017.PubMed/NCBI

92 

Sharma SB, Lin CC, Farrugia MK, McLaughlin SL, Ellis EJ, Brundage KM, Salkeni MA and Ruppert JM: MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol Cell Biol. 34:4143–4164. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Xiao W, Zheng S, Zou Y, Yang A and Xie X, Tang H and Xie X: CircAHNAK1 inhibits proliferation and metastasis of Triple-negative breast cancer by modulating miR-421 and RASA1. Aging (Albany NY). 11:12043–12056. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Kanwar N, Carmine-Simmen K, Nair R, Wang C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang J, et al: Amplification of a calcium channel subunit CACNG4 increases breast cancer metastasis. EBioMedicine. 52:1026462020. View Article : Google Scholar : PubMed/NCBI

95 

Zhang L, Zhan X, Yan D and Wang Z: Circulating: MicroRNA-21 is involved in lymph node metastasis in cervical cancer by targeting RASA1. Int J Gynecol Cancer. 26:810–816. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Hu J, Wang L, Chen J, Gao H, Zhao W, Huang Y, Jiang T, Zhou J and Chen Y: The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophys Res Commun. 505:222–228. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Jiang X, Tang H and Chen T: Epidemiology of gynecologic cancers in China. J Gynecol Oncol. 29:e72018. View Article : Google Scholar : PubMed/NCBI

98 

Lubeck BA, Lapinski PE, Oliver JA, Ksionda O, Parada LF, Zhu Y, Maillard I, Chiang M, Roose J and King PD: GTPase-activating proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T cells results in the development of T cell acute lymphoblastic Leukemia. J Immunol. 195:31–35. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL, Wu W and Wu XZ: MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One. 6:e270082016. View Article : Google Scholar

100 

Ng JH, Iyer NG, Tan MH and Edgren G: Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Krishnan N, Gupta S, Palve V, Varghese L, Pattnaik S, Jain P, Khyriem C, Hariharan A, Dhas K, Nair J, et al: Integrated analysis of oral tongue squamous cell carcinoma identifies key variants and pathways linked to risk habits, HPV, clinical parameters and tumor recurrence. F1000Res. 4:12152015. View Article : Google Scholar : PubMed/NCBI

102 

Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 7:1088–1099. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Zhang W, Wang M, Wu Q, Zhu Q, Jiao Y, Zhu Y, Yang B, Ni S, Yu J, Sun H and Zeng YX: Mutational signatures and the genomic landscape of betel quid Chewing-associated tongue carcinoma. Cancer Med. 8:701–711. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Wang J, Wang W, Li J, Wu L, Song M and Meng Q: miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther. 10:667–679. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Rajamani D and Bhasin MK: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 8:382016. View Article : Google Scholar : PubMed/NCBI

107 

Kent OA, Mendell JT and Rottapel R: Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol Cancer Res. 14:267–277. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Culp MB, Soerjomataram I, Efstathiou JA, Bray F and Jemal A: Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Sowalsky AG, Xia Z, Wang L, Zhao H, Chen S, Bubley GJ, Balk SP and Li W: Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol Cancer Res. 13:98–106. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Berndt SI, Wang Z, Yeager M, Alavanja MC, Albanes D, Amundadottir L, Andriole G, Beane Freeman L, Campa D, Cancel-Tassin G, et al: Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun. 6:68892015. View Article : Google Scholar : PubMed/NCBI

111 

Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A, Kaufmann M, Vogel B, Katus HA, Meder B, et al: miRTrail-a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics. 13:362012. View Article : Google Scholar : PubMed/NCBI

112 

Sung H, Kanchi KL, Wang X, Hill KS, Messina JL, Lee JH, Kim Y, Dees ND, Ding L, Teer JK, et al: Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget. 7:23885–23996. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J, Chekan M, et al: BRAFV600E-associated gene expression profile: Early changes in the transcriptome, based on a transgenic mouse model of papillary thyroid carcinoma. PLoS One. 10:e01436882015. View Article : Google Scholar : PubMed/NCBI

114 

Park C, Ha SY, Kim ST, Kim HC, Heo JS, Park YS, Lauwers G, Lee J and Kim KM: Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors. Oncotarget. 7:4024–4035. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Zhang RL, Yang JP, Peng LX, Zheng LS, Xie P, Wang MY, Cao Y, Zhang ZL, Zhou FJ, Qian CN and Bao YX: RNA-binding protein QKI-5 inhibits the proliferation of clear cell renal cell carcinoma via post-transcriptional stabilization of RASA1 mRNA. Cell Cycle. 15:3094–3104. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Zhang RL, Aimudula A, Dai JH and Bao YX: RASA1 inhibits the progression of renal cell carcinoma by decreasing the expression of miR-223-3p and promoting the expression of FBXW7. Biosci Rep. 40:BSR201941432020. View Article : Google Scholar : PubMed/NCBI

117 

Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang Y, Zhou J, Pan K, Sun L, Fang J, et al: A global burden of gastric cancer: The major impact of China. Expert Rev Gastroenterol Hepatol. 11:651–661. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Li Z, Li D, Zhang G, Xiong J, Jie Z, Cheng H, Cao Y, Jiang M, Lin L, Le Z, et al: Methylation-associated silencing of MicroRNA-335 contributes tumor cell invasion and migration by interacting with RASA1 in gastric cancer. Am J Cancer Res. 4:648–662. 2014.PubMed/NCBI

119 

Chen X, Cai S, Li B, Zhang X, Li W, Liang H, Cao X, Wang L and Wu Z: MicroRNA-21 regulates the biological behavior of esophageal squamous cell carcinoma by targeting RASA1. Oncol Rep. 41:1627–1637. 2019.PubMed/NCBI

120 

Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, Tsai KY, Curry JL, Tetzlaff MT, Lai SY, et al: Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 20:6582–6592. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Jouenne F, Reger de Moura C, Lorillon G, Meignin V, Dumaz N, Lebbe C6 Mourah S and Tazi A: RASA1 loss in a BRAF-mutated Langerhans cell sarcoma: A mechanism of resistance to BRAF inhibitor. Ann Oncol. 30:1170–1172. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Sears R and Gray JW: Epigenomic inactivation of RasGAPs activates RAS signaling in a subset of luminal b breast cancers. Cancer Discov. 7:131–133. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Degirmenci U, Wang M and Hu J: Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells. 9:1982020. View Article : Google Scholar

124 

Hoxhaj G and Manning BD: The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Markou A, Zavridou M and Lianidou ES: miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl). 7:19–27. 2016.PubMed/NCBI

126 

Revencu N, Fastre E, Ravoet M, Helaers R, Brouillard P, Bisdorff-Bresson A, Chung CWT, Gerard M, Dvorakova V, Irvine AD, et al: RASA1 mosaic mutations in patients with capillary malformation-arteriovenous malformation. J Med Genet. 57:48–52. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Liu Z, Deng M, Wu L and Zhang S: An integrative investigation on significant mutations and their down-stream pathways in lung squamous cell carcinoma reveals CUL3/KEAP1/NRF2 relevant subtypes. Mol Med. 26:482020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Li Y, Wang Q, Su B, Xu H, Sun Y, Sun P, Li R, Peng X, Cai J, Cai J, et al: Role of RASA1 in cancer: A review and update (Review). Oncol Rep 44: 2386-2396, 2020.
APA
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y. ... Cai, J. (2020). Role of RASA1 in cancer: A review and update (Review). Oncology Reports, 44, 2386-2396. https://doi.org/10.3892/or.2020.7807
MLA
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y., Sun, P., Li, R., Peng, X., Cai, J."Role of RASA1 in cancer: A review and update (Review)". Oncology Reports 44.6 (2020): 2386-2396.
Chicago
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y., Sun, P., Li, R., Peng, X., Cai, J."Role of RASA1 in cancer: A review and update (Review)". Oncology Reports 44, no. 6 (2020): 2386-2396. https://doi.org/10.3892/or.2020.7807
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Li Y, Wang Q, Su B, Xu H, Sun Y, Sun P, Li R, Peng X, Cai J, Cai J, et al: Role of RASA1 in cancer: A review and update (Review). Oncol Rep 44: 2386-2396, 2020.
APA
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y. ... Cai, J. (2020). Role of RASA1 in cancer: A review and update (Review). Oncology Reports, 44, 2386-2396. https://doi.org/10.3892/or.2020.7807
MLA
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y., Sun, P., Li, R., Peng, X., Cai, J."Role of RASA1 in cancer: A review and update (Review)". Oncology Reports 44.6 (2020): 2386-2396.
Chicago
Zhang, Y., Li, Y., Wang, Q., Su, B., Xu, H., Sun, Y., Sun, P., Li, R., Peng, X., Cai, J."Role of RASA1 in cancer: A review and update (Review)". Oncology Reports 44, no. 6 (2020): 2386-2396. https://doi.org/10.3892/or.2020.7807
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team