Role of RASA1 in cancer: A review and update (Review)
- Authors:
- Yanhua Zhang
- Yue Li
- Quanyue Wang
- Bo Su
- Hui Xu
- Yang Sun
- Pei Sun
- Rumeng Li
- Xiaochun Peng
- Jun Cai
-
Affiliations: Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China, Qinghai Institute of Health Sciences, Xining, Qinghai 810000, P.R. China, Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China - Published online on: October 13, 2020 https://doi.org/10.3892/or.2020.7807
- Pages: 2386-2396
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Harrell Stewart DR and Clark GJ: Pumping the brakes on RAS-negative regulators and death effectors of RAS. J Cell Sci. 133:jcs2388652020. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Walker SA, de Vet E, Cook S, Welch HC and Lockyer PJ: Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J Biol Chem. 286:19905–19916. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sot B, Behrmann E, Raunser S and Wittinghofer A: Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes. Proc Natl Acad Sci USA. 110:111–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jaber Chehayeb R, Stiegler AL and Boggon TJ: Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLoS One. 14:e02261132019. View Article : Google Scholar : PubMed/NCBI | |
Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T and Pawson T: Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature. 377:695–701. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ and Chan J: RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest. 124:2774–2784. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wang Z, Wu H, Jiang W and Hu R: Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways. Int J Mol Med. 35:1355–1361. 2015.PubMed/NCBI | |
Lei Z, van Mil A, Brandt MM, Grundmann S, Hoefer I, Smits M, El Azzouzi H, Fukao T, Cheng C, Doevendans PA, et al: MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med. 19:1994–2005. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, et al: MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 16:909–914. 2010. View Article : Google Scholar : PubMed/NCBI | |
Norden PR, Kim DJ, Barry DM, Cleaver OB and Davis GE: Cdc42 and k-ras control endothelial tubulogenesis through apical membrane and cytoskeletal polarization: Novel stimulatory roles for GTPase effectors, the small GTPases, Rac2 and Rap1b, and inhibitory influence of Arhgap31 and Rasa1. PLoS One. 11:e01477582016. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Teng JM, North PE, Lapinski PE and King PD: RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest. 130:3545–3561. 2019. View Article : Google Scholar | |
Jing L, Li H, Zhang T, Lu J and Zhong L: MicroRNA-4530 suppresses cell proliferation and induces apoptosis by targeting RASA1 in human umbilical vein endothelial cells. Mol Med Rep. 19:3393–3402. 2019.PubMed/NCBI | |
Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, Yu Y, Huang H, Hu Y, Yang Z, et al: MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018:32903722018. View Article : Google Scholar : PubMed/NCBI | |
Lapinski PE, Kwon S, Lubeck BA, Wilkinson JE, Srinivasan RS, Sevick-Muraca E and King PD: RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J Clin Invest. 122:733–747. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roth Flach RJ, Guo CA, Danai LV, Yawe JC, Gujja S, Edwards YJ and Czech MP: Endothelial Mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function. Mol Cell Biol. 36:1740–1749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ and King PD: RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest. 127:2569–2585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Castorena-Gonzalez JA, Srinivasan RS, King PD, Simon AM and Davis MJ: Simplified method to quantify valve Back-leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37. J Physiol. 598:2297–23102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lapinski PE, Qiao Y, Chang CH and King PD: A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J Immunol. 187:151–163. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pixley FJ, Xiong Y, Yu RY, Sahai EA, Stanley ER and Ye BH: BCL6 suppresses RhoA activity to alter macrophage morphology and motility. J Cell Sci. 118:1873–1883. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hancock ML, Preitner N, Quan J and Flanagan JG: MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci. 34:66–78. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, et al: Differentially tolerized mouse antigen presenting cells share a common miRNA signature including enhanced mmu-miR-223-3p expression which is sufficient to imprint a protolerogenic state. Front Pharmacol. 9:9152018. View Article : Google Scholar : PubMed/NCBI | |
Schauer SN, Sontakke SD, Watson ED, Esteves CL and Donadeu FX: Involvement of miRNAs in equine follicle development. Reproduction. 146:273–282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J and Ruan K: miR-335 is involved in the rat epididymal development by targeting the mRNA of RASA1. Biochem Biophys Res Commun. 402:222–227. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li D, Wikstrom JD, Pivarcsi A, Sonkoly E, Ståhle M and Landén NX: MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Sci Rep. 7:77972017. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Ma X, Su Y, Song Y, Tian Y, Yuan S, Zhang X, Yang D, Zhang H, Shuai J, et al: MiR-31 mediates inflammatory signaling to promote re-epithelialization during skin wound healing. J Invest Dermatol. 138:2253–2263. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khalil H, Loukili N, Regamey A, Cuesta-Marban A, Santori E, Huber M and Widmann C: The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress. J Cell Sci. 128:3502–3513. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, Mayer J, Scheuerle AE, Lewis T, Grimmer JF, et al: Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet. 26:1521–1536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E, et al: RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 34:1632–1641. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Streicher JL, Medne L, Krantz ID and Yan AC: EPHB4 Mutation implicated in capillary malformation-arteriovenous malformation syndrome: A case report. Pediatr Dermatol. 34:e227–e230. 2017. View Article : Google Scholar : PubMed/NCBI | |
Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, Chung W, Dubois J, Lacour JP, Martorell L, et al: Germline Loss-of-function mutations in EPHB4 cause a second form of capillary Malformation-arteriovenous malformation (CM-AVM2) Deregulating RAS-MAPK signaling. Circulation. 136:1037–1048. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Alfayate R, Martínez-Moreno N, Rosati SD, Moreu-Gamazo M, Pérez-García C and Martínez-Alvarez R: Klippel-Trenaunay-Weber syndrome associated with multiple cerebral arteriovenous malformations: Usefulness of Gamma Knife stereotactic radiosurgery in this syndrome. World Neurosurg. 141:425–429. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boutarbouch M, Ben Salem D, Giré L, Giroud M, Béjot Y and Ricolfi F: Multiple cerebral and spinal cord cavernomas in Klippel-Trenaunay-Weber syndrome. J Clin Neurosci. 17:1073–1075. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karadag A, Senoglu M, Sayhan S, Okromelidze L and Middlebrooks EH: Klippel-Trenaunay-Weber syndrome with atypical presentation of cerebral cavernous angioma: A case report and literature review. World Neurosurg. 126:354–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zheng JW, Yang XJ, Wang HJ, Ma D and Qin ZP: Detection of RASA1 mutations in patients with sporadic Sturge-Weber syndrome. Childs Nerv Syst. 27:603–607. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kadam SD, Gucek M, Cole RN, Watkins PA and Comi AM: Cell proliferation and oxidative stress pathways are modified in fibroblasts from Sturge-Weber syndrome patients. Arch Dermatol Res. 304:229–235. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chida A, Shintani M, Wakamatsu H, Tsutsumi Y, Iizuka Y, Kawaguchi N, Furutani Y, Inai K, Nonoyama S and Nakanishi T: ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation. J Pediatr Genet. 2:181–189. 2013.PubMed/NCBI | |
Komiyama M, Miyatake S, Terada A, Ishiguro T, Ichiba H and Matsumoto N: Vein of Galen aneurysmal malformation in monozygotic Twin. World Neurosurg. 91:672.e11–e15. 2016. View Article : Google Scholar | |
Zweier M and Rauch A: The MEF2C-related and 5q14.3q15 microdeletion syndrome. Mol Syndromol. 2:164–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Burrows PE, Gonzalez-Garay ML, Rasmussen JC, Aldrich MB, Guilliod R, Maus EA, Fife CE, Kwon S, Lapinski PE, King PD and Sevick-Muraca EM: Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci USA. 110:8621–8626. 2013. View Article : Google Scholar : PubMed/NCBI | |
Revencu N, Boon LM, Dompmartin A, Rieu P, Busch WL, Dubois J, Forzano F, van Hagen JM, Halbach S, Kuechler A, et al: Germline mutations in RASA1 are not found in patients with Klippel-trenaunay syndrome or capillary malformation with limb overgrowth. Mol Syndromol. 4:173–178. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fülöp GT, Langa C, et al: BMP9 mutations cause a Vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 93:530–537. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hernandez F, Huether R, Carter L, Johnston T, Thompson J, Gossage JR, Chao E and Elliott AM: Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia. Hum Genome Var. 2:150402015. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Reddy MA, Chen Z, Putta S, Lanting L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK and Natarajan R: Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem. 287:15672–15683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Diao X, Shen E, Wang X and Hu B: Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Mol Med Rep. 4:633–640. 2011.PubMed/NCBI | |
Queirós AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E, Westphal C, Sanchez Ruderisch H and Regitz-Zagrosek V: Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int J Cardiol. 169:331–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, et al: MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 125:4149–4159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nozari A, Aghaei-Moghadam E, Zeinaloo A, Alavi A, Ghasemi Firouzabdi S, Minaee S, Eskandari Hesari M and Behjati F: A pathogenic homozygous mutation in the pleckstrin homology domain of RASA1 is responsible for familial tricuspid atresia in an Iranian consanguineous family. Cell J. 21:70–77. 2019.PubMed/NCBI | |
Dai X, Yi M, Wang D, Chen Y and Xu X: Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem. 400:753–763. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bijkerk R, de Bruin RG, van Solingen C, van Gils JM, Duijs JM, van der Veer EP, Rabelink TJ, Humphreys BD and van Zonneveld AJ: Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int. 89:1268–1280. 2016. View Article : Google Scholar : PubMed/NCBI | |
Telegina DV, Korbolina EE, Ershov NI, Kolosova NG and Kozhevnikova OS: Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy. Cell Cycle. 14:3544–3556. 2015. View Article : Google Scholar : PubMed/NCBI | |
Falconi G, Fabiani E, Fianchi L, Criscuolo M, Raffaelli CS, Bellesi S, Hohaus S, Voso MT, D'Alò F and Leone G: Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol. 44:75–83.e1-e14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Guo H, Xie A, Liao O, Ju F and Zhou Y: MicroRNA-144 relieves chronic constriction injury-induced neuropathic pain via targeting RASA1. Biotechnol Appl Biochem. 67:294–302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ulger C, Toruner GA, Alkan M, Mohammed M, Damani S, Kang J, Galante A, Aviv H, Soteropoulos P, Tolias PP, et al: Comprehensive genome-wide comparison of DNA and RNA level scan using microarray technology for identification of candidate Cancer-related genes in the HL-60 cell line. Cancer Genet Cytogenet. 147:28–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang XY, Guan M, Vigil D, Der CJ, Lowy DR and Popescu NC: p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene. 28:1401–1409. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, Lander ES and Getz G: Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci USA. 112:E5486–E5495. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Fan Y, Huang X, Luo J, Zhong L, Shu XS, Lu L, Xiang T, Chan ATC, Yeo W, et al: Tumor suppression of Ras GTPase-activating protein RASA5 through antagonizing Ras signaling perturbation in carcinomas. Science. 21:1–18. 2019. | |
Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, Etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, Mansukhani M, Koul S, Halmos B and Borczuk AC: Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 34:794–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu YJ, Xu B and Xia W: Hsa-mir-182 downregulates RASA1 and suppresses lung squamous cell carcinoma cell proliferation. Clin Lab. 60:155–159. 2014.PubMed/NCBI | |
Shi L, Middleton J, Jeon YJ, Magee P, Veneziano D, Laganà A, Leong HS, Sahoo S5, Fassan M, Booton R, et al: KRAS induces lung tumorigenesis through microRNAs modulation. Cell Death Dis. 9:2192018. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, et al: Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, Non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21:373–386. 2020. View Article : Google Scholar : PubMed/NCBI | |
He J, Jin S, Zhang W, Wu D, Li J, Xu J and Gao W: Long Non-coding RNA LOC554202 promotes acquired gefitinib resistance in Non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 10:6003–6013. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hayashi T, Desmeules P, Smith RS, Drilon A, Somwar R and Ladanyi M: RASA1 and NF1 are preferentially co-mutated and define a distinct genetic subset of smoking-associated non-small cell lung carcinomas sensitive to MEK inhibition. Clin Cancer Res. 24:1436–1447. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kitajima S and Barbie DA: RASA1/NF1-Mutant lung cancer: Racing to the Clinic? Clin Cancer Res. 24:1243–1245. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kas SM, de Ruiter JR, Schipper K, Schut E, Bombardelli L, Wientjens E, Drenth AP, de Korte-Grimmerink R, Mahakena S, Phillips C, et al: Transcriptomics and transposon mutagenesis identify multiple mechanisms of resistance to the FGFR Inhibitor AZD4547. Cancer Res. 78:5668–5679. 2018. View Article : Google Scholar : PubMed/NCBI | |
Crockett SD and Nagtegaal I: Terminology, molecular features, epidemiology, and management of serrated colorectal neoplasia. Gastroenterology. 157:949–966. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Schell MJ, Teer JK, Greenawalt DM, Yang M and Yeatman TJ: Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS One. 10:e01266702015. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J and Zhang J: MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem. 288:9508–9518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gong B, Liu WW, Nie WJ, Li DF, Xie ZJ, Liu C, Liu YH, Mei P and Li ZJ: MiR-21 RASA1 axis affects malignancy of colon cancer cells via RAS pathways. World J Gastroenterol. 21:1488–1497. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, et al: Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and Up-regulating expression of MicroRNA-21. Gastroenterology. 152:851–866.e24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Wang C, Long S, Ma Y, Guo Y, Huang Z, Chen X, Zhang C, Chen J and Zhang J: C/EBP-β-activated microRNA-223 promotes tumour growth through targeting RASA1 in human colorectal cancer. Br J Cancer. 112:1491–1500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Yang H, Yuan L, Liu G, Zhang C, Hong M, Liu Y, Zhou M, Chen F and Li X: Overexpression of miR-335 confers cell proliferation and tumour growth to colorectal carcinoma cells. Mol Cell Biochem. 412:235–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Antoine-Bertrand J, Duquette PM, Alchini R, Kennedy TE, Fournier AE and Lamarche-Vane N: p120RasGAP protein mediates Netrin-1 protein-induced cortical axon outgrowth and guidance. J Biol Chem. 291:4589–4602. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yarom N, Gresham G, Boame N and Jonker D: KRAS status as a predictor of chemotherapy activity in patients with metastatic colorectal cancer. Clin Colorectal Cancer. 18:e309–e315. 2019. View Article : Google Scholar : PubMed/NCBI | |
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, et al: p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One. 9:e861032014. View Article : Google Scholar : PubMed/NCBI | |
Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL and Snippert HJG: CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget. 10:1440–1457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. Apr 22–2020.(Epub ahead of print). View Article : Google Scholar | |
Calvisi DF, Ladu S, Conner EA, Seo D, Hsieh JT, Factor VM and Thorgeirsson SS: Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J Hepatol. 54:311–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen YL, Huang WC, Yao HL, Chen PM, Lin PY, Feng FY and Chu PY: Down-regulation of RASA1 is associated with poor prognosis in human hepatocellular carcinoma. Anticancer Res. 37:781–785. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Huang F, Deng G, Nie W, Huang W and Zeng X: miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med. 6:1265–1270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J and Zheng S: Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:672015. View Article : Google Scholar : PubMed/NCBI | |
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH and Chen KF: Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology. 63:1528–1543. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vanli G, Sempoux C and Widmann C: The caspase-3/p120 RasGAP Stress-sensing module reduces liver cancer incidence but does not affect overall survival in gamma-irradiated and carcinogen-treated mice. Mol Carcinog. 56:1680–1684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sancho-Garnier H and Colonna M: Breast cancer epidemiology. Presse Med. 48:1076–1084. 2019.(In French). View Article : Google Scholar : PubMed/NCBI | |
Suárez-Cabrera C, Quintana RM, Bravo A, Casanova ML, Page A, Alameda JP, Paramio JM, Maroto A, Salamanca J, Dupuy AJ, et al: A transposon-based analysis reveals RASA1 is involved in triple-negative breast cancer. Cancer Res. 77:1357–1368. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Stern HM, Ge L, O'Brien C, Haydu L, Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC, et al: Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res. 7:511–522. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu T, Sun Q, Niu M, Jiang Y and Pang D: Downregulation of Ras GTPase activating protein 1 is associated with poor survival of breast invasive ductal carcinoma patients. Oncol Rep. 33:119–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Peng X, Zhang K, Li C, Su B, Zhang Y and Yu W: Co-expression and significance of Dok2 and Ras p21 protein activator 1 in breast cancer. Oncol Lett. 14:5386–5392. 2017.PubMed/NCBI | |
Sharma SB, Lin CC, Farrugia MK, McLaughlin SL, Ellis EJ, Brundage KM, Salkeni MA and Ruppert JM: MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol Cell Biol. 34:4143–4164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Zheng S, Zou Y, Yang A and Xie X, Tang H and Xie X: CircAHNAK1 inhibits proliferation and metastasis of Triple-negative breast cancer by modulating miR-421 and RASA1. Aging (Albany NY). 11:12043–12056. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanwar N, Carmine-Simmen K, Nair R, Wang C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang J, et al: Amplification of a calcium channel subunit CACNG4 increases breast cancer metastasis. EBioMedicine. 52:1026462020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhan X, Yan D and Wang Z: Circulating: MicroRNA-21 is involved in lymph node metastasis in cervical cancer by targeting RASA1. Int J Gynecol Cancer. 26:810–816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang L, Chen J, Gao H, Zhao W, Huang Y, Jiang T, Zhou J and Chen Y: The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophys Res Commun. 505:222–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Tang H and Chen T: Epidemiology of gynecologic cancers in China. J Gynecol Oncol. 29:e72018. View Article : Google Scholar : PubMed/NCBI | |
Lubeck BA, Lapinski PE, Oliver JA, Ksionda O, Parada LF, Zhu Y, Maillard I, Chiang M, Roose J and King PD: GTPase-activating proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T cells results in the development of T cell acute lymphoblastic Leukemia. J Immunol. 195:31–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL, Wu W and Wu XZ: MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One. 6:e270082016. View Article : Google Scholar | |
Ng JH, Iyer NG, Tan MH and Edgren G: Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krishnan N, Gupta S, Palve V, Varghese L, Pattnaik S, Jain P, Khyriem C, Hariharan A, Dhas K, Nair J, et al: Integrated analysis of oral tongue squamous cell carcinoma identifies key variants and pathways linked to risk habits, HPV, clinical parameters and tumor recurrence. F1000Res. 4:12152015. View Article : Google Scholar : PubMed/NCBI | |
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 7:1088–1099. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wang M, Wu Q, Zhu Q, Jiao Y, Zhu Y, Yang B, Ni S, Yu J, Sun H and Zeng YX: Mutational signatures and the genomic landscape of betel quid Chewing-associated tongue carcinoma. Cancer Med. 8:701–711. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang W, Li J, Wu L, Song M and Meng Q: miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther. 10:667–679. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rajamani D and Bhasin MK: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 8:382016. View Article : Google Scholar : PubMed/NCBI | |
Kent OA, Mendell JT and Rottapel R: Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol Cancer Res. 14:267–277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Culp MB, Soerjomataram I, Efstathiou JA, Bray F and Jemal A: Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sowalsky AG, Xia Z, Wang L, Zhao H, Chen S, Bubley GJ, Balk SP and Li W: Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol Cancer Res. 13:98–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Berndt SI, Wang Z, Yeager M, Alavanja MC, Albanes D, Amundadottir L, Andriole G, Beane Freeman L, Campa D, Cancel-Tassin G, et al: Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun. 6:68892015. View Article : Google Scholar : PubMed/NCBI | |
Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A, Kaufmann M, Vogel B, Katus HA, Meder B, et al: miRTrail-a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics. 13:362012. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Kanchi KL, Wang X, Hill KS, Messina JL, Lee JH, Kim Y, Dees ND, Ding L, Teer JK, et al: Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget. 7:23885–23996. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J, Chekan M, et al: BRAFV600E-associated gene expression profile: Early changes in the transcriptome, based on a transgenic mouse model of papillary thyroid carcinoma. PLoS One. 10:e01436882015. View Article : Google Scholar : PubMed/NCBI | |
Park C, Ha SY, Kim ST, Kim HC, Heo JS, Park YS, Lauwers G, Lee J and Kim KM: Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors. Oncotarget. 7:4024–4035. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang RL, Yang JP, Peng LX, Zheng LS, Xie P, Wang MY, Cao Y, Zhang ZL, Zhou FJ, Qian CN and Bao YX: RNA-binding protein QKI-5 inhibits the proliferation of clear cell renal cell carcinoma via post-transcriptional stabilization of RASA1 mRNA. Cell Cycle. 15:3094–3104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang RL, Aimudula A, Dai JH and Bao YX: RASA1 inhibits the progression of renal cell carcinoma by decreasing the expression of miR-223-3p and promoting the expression of FBXW7. Biosci Rep. 40:BSR201941432020. View Article : Google Scholar : PubMed/NCBI | |
Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang Y, Zhou J, Pan K, Sun L, Fang J, et al: A global burden of gastric cancer: The major impact of China. Expert Rev Gastroenterol Hepatol. 11:651–661. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li D, Zhang G, Xiong J, Jie Z, Cheng H, Cao Y, Jiang M, Lin L, Le Z, et al: Methylation-associated silencing of MicroRNA-335 contributes tumor cell invasion and migration by interacting with RASA1 in gastric cancer. Am J Cancer Res. 4:648–662. 2014.PubMed/NCBI | |
Chen X, Cai S, Li B, Zhang X, Li W, Liang H, Cao X, Wang L and Wu Z: MicroRNA-21 regulates the biological behavior of esophageal squamous cell carcinoma by targeting RASA1. Oncol Rep. 41:1627–1637. 2019.PubMed/NCBI | |
Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, Tsai KY, Curry JL, Tetzlaff MT, Lai SY, et al: Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 20:6582–6592. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jouenne F, Reger de Moura C, Lorillon G, Meignin V, Dumaz N, Lebbe C6 Mourah S and Tazi A: RASA1 loss in a BRAF-mutated Langerhans cell sarcoma: A mechanism of resistance to BRAF inhibitor. Ann Oncol. 30:1170–1172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sears R and Gray JW: Epigenomic inactivation of RasGAPs activates RAS signaling in a subset of luminal b breast cancers. Cancer Discov. 7:131–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Degirmenci U, Wang M and Hu J: Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells. 9:1982020. View Article : Google Scholar | |
Hoxhaj G and Manning BD: The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI | |
Markou A, Zavridou M and Lianidou ES: miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl). 7:19–27. 2016.PubMed/NCBI | |
Revencu N, Fastre E, Ravoet M, Helaers R, Brouillard P, Bisdorff-Bresson A, Chung CWT, Gerard M, Dvorakova V, Irvine AD, et al: RASA1 mosaic mutations in patients with capillary malformation-arteriovenous malformation. J Med Genet. 57:48–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Deng M, Wu L and Zhang S: An integrative investigation on significant mutations and their down-stream pathways in lung squamous cell carcinoma reveals CUL3/KEAP1/NRF2 relevant subtypes. Mol Med. 26:482020. View Article : Google Scholar : PubMed/NCBI |