1
|
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ,
Meester RGS, Barzi A and Jemal A: Colorectal cancer statistics,
2017. CA Cancer J Clin. 67:177–193. 2017. View Article : Google Scholar
|
2
|
Doubeni CA, Corley DA, Quinn VP, Jensen
CD, Zauber AG, Goodman M, Johnson JR, Mehta SJ, Becerra TA, Zhao
WK, et al: Effectiveness of screening colonoscopy in reducing the
risk of death from right and left colon cancer: A large
community-based study. Gut. 67:291–298. 2018. View Article : Google Scholar
|
3
|
Gibb EA, Brown CJ and Lam W L: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10:382011. View Article : Google Scholar
|
4
|
Toraih EA, Alghamdi SA, El-Wazir A, Hosny
MM, Hussein MH, Khashana MS and Fawzy MS: Dual biomarkers long
non-coding RNA GAS5 and microRNA-34a co-expression signature in
common solid tumors. PLoS One. 13:e01982312018. View Article : Google Scholar
|
5
|
Xue D, Zhou C, Lu H, Xu R, Xu X and He X:
lncRNA GAS5 inhibits proliferation and progression of prostate
cancer by targeting miR-103 through AKT/mTOR signaling pathway.
Tumor Biol. Oct 14–2016.(Epub ahead of print). doi:
10.1007/s13277-016-5429-8. View Article : Google Scholar
|
6
|
Liu L, Pang X, Shang W, Xie H, Feng Y and
Feng G: Long non-coding RNA GAS5 sensitizes renal cell carcinoma to
sorafenib via miR-21/SOX5 pathway. Cell Cycle. 18:257–263. 2018.
View Article : Google Scholar
|
7
|
Gao J, Liu M, Zou Y, Mao M, Shen T, Zhang
C, Song S, Sun M, Zhang S, Wang B, et al: Long non-coding RNA
growth arrest-specific transcript 5 is involved in ovarian cancer
cell apoptosis through the mitochondria-mediated apoptosis pathway.
Oncol Rep. 34:3212–3221. 2015. View Article : Google Scholar
|
8
|
Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N,
Yin Q, Li J and Sheng X: Long noncoding RNA GAS5, which acts as a
tumor suppressor via microRNA 21, regulates cisplatin resistance
expression in cervical cancer. Int J Gynecol Cancer. 27:1096–1108.
2017. View Article : Google Scholar
|
9
|
Ye K, Wang S, Zhang H, Han H, Ma B and Nan
W: Long noncoding RNA GAS5 suppresses cell growth and
epithelial-mesenchymal transition in osteosarcoma by regulating the
miR-221/ARHI pathway. J Cell Biochem. 118:4772–4781. 2017.
View Article : Google Scholar
|
10
|
Zheng Y, Song D, Xiao K, Yang C, Ding Y,
Deng W and Tong S: lncRNA GAS5 contributes to lymphatic metastasis
in colorectal cancer. Oncotarget. 7:83727–83734. 2016. View Article : Google Scholar
|
11
|
Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C,
Xu M, Wu F and Mo YY: Negative regulation of lncRNA GAS5 by miR-21.
Cell Death Differ. 20:1558–1568. 2013. View Article : Google Scholar
|
12
|
Yang W, Hong L, Xu X, Wang Q, Huang J and
Jiang L: lncRNA GAS5 suppresses the tumorigenesis of cervical
cancer by downregulating miR-196a and miR-205. Tumour Biol.
39:1010428317711312016. View Article : Google Scholar
|
13
|
Guo C, Song WQ, Sun P, Jin L and Dai HY:
lncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in
endometrial cancer cells. J Biomed Sci. 22:1002015. View Article : Google Scholar
|
14
|
Gao ZQ, Wang JF, Chen DH, Ma XS, Wu Y,
Tang Z and Dang XW: Long non-coding RNA GAS5 suppresses pancreatic
cancer metastasis through modulating miR-32-5p/PTEN axis. Cell
Biosci. 7:662017. View Article : Google Scholar
|
15
|
Li Y, Gu J and Lu H: The GAS5/miR-222 Axis
regulates proliferation of gastric cancer cells through the
PTEN/Akt/mTOR Pathway. Dig Dis Sci. 62:3426–3437. 2017. View Article : Google Scholar
|
16
|
Sun C, Wang FJ, Zhang HG, Xu XZ, Jia RC,
Yao L and Qiao PF: miR-34a mediates oxaliplatin resistance of
colorectal cancer cells by inhibiting macroautophagy via
transforming growth factor-β/Smad4 pathway. World J Gastroenterol.
23:1816–1827. 2017. View Article : Google Scholar
|
17
|
Qiao PF, Yao L and Zeng ZL:
Catalpol-mediated microRNA-34a suppresses autophagy and malignancy
by regulating SIRT1 in colorectal cancer. Oncol Rep. 43:1053–1066.
2020.
|
18
|
Gu J, Wang Y, Wang X, Zhou D, Wang X, Zhou
M and He Z: Effect of the lncRNA GAS5-MiR-23a-ATG3 axis in
regulating autophagy in patients with breast cancer. Cell Physiol
Biochem. 48:194–207. 2018. View Article : Google Scholar
|
19
|
Li L, Huang C, He Y, Sang Z, Liu G and Dai
H: Knockdown of Long non-coding RNA GAS5 increases miR-23a by
targeting ATG3 involved in autophagy and cell viability. Cell
Physiol Biochem. 48:1723–1734. 2018. View Article : Google Scholar
|
20
|
Zhang N, Yang GQ, Shao XM and Wei L: GAS5
modulated autophagy is a mechanism modulating cisplatin sensitivity
in NSCLC cells. Eur Rev Med Pharmacol. 20:2271–2277. 2016.
|
21
|
Sobin L, Gospodarowicz M and Wittekind C:
TNM Classification of Malignant Tumors. 7th edition. UICC
International Union Against Cancer. 2009, simplehttps://media.wiley.com/product_data/coverImage300/60/14443589/1444358960.jpg
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Zhang T, Du X, Zhao L, He M, Lin L, Guo C,
Zhang X, Han J, Yan H, Huang K, et al: SIRT1 facilitates primordial
follicle recruitment independent of deacetylase activity through
directly modulating Akt1 and mTOR transcription.
FASEB J. 33:14703–14716. 2019. View Article : Google Scholar
|
24
|
Pickard MR and Williams GT: Molecular and
cellular mechanisms of action of tumour suppressor GAS5 lncRNA.
Genes (Basel). 6:484–499. 2015. View Article : Google Scholar
|
25
|
Schneider C, King RM and Philipson L:
Genes specifically expressed at growth arrest of mammalian cells.
Cell. 54:787–793. 1988. View Article : Google Scholar
|
26
|
Li W, Zhao W, Lu Z, Zhang W and Yang X:
Long noncoding RNA GAS5 promotes proliferation, migration, and
invasion by regulation of miR-301a in esophageal cancer. Oncol Res.
26:1285–1294. 2018. View Article : Google Scholar
|
27
|
Tao R, Hu S, Wang S, Zhou X, Zhang Q, Wang
C, Zhao X, Zhou W, Zhang S, Li C, et al: Association between indel
polymorphism in the promoter region of lncRNA GAS5 and the risk of
hepatocellular carcinoma. Carcinogenesis. 36:1136–1143. 2015.
View Article : Google Scholar
|
28
|
Jia YL, Shi L, Zhou JN, Fu CJ, Chen L,
Yuan HF, Wang YF, Yan XL, Xu YC, Zeng Q, et al: Epimorphin promotes
human hepatocellular carcinoma invasion and metastasis through
activation of focal adhesion kinase/extracellular signal-regulated
kinase/matrix metalloproteinase-9 axis. Hepatology. 54:1808–1818.
2011. View Article : Google Scholar
|
29
|
Christodoulou F, Raible F, Tomer R,
Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P and
Arendt D: Ancient animal microRNAs and the evolution of tissue
identity. Nature. 463:1084–1088. 2010. View Article : Google Scholar
|
30
|
Borrell B: How accurate are cancer cell
lines? Nature. 463:8582010. View Article : Google Scholar
|
31
|
Li C, Liu T, Zhang Y, Li Q and Jin LK:
lncRNA-ZDHHC8P1 promotes the progression and metastasis of
colorectal cancer by targeting miR-34a. Eur Rev Med Pharmacol Sci.
23:1476–1486. 2019.
|
32
|
Kim EJ, Kho JH, Kang MR and Um SJ: Active
regulator of SIRT1 cooperates with SIRT1 and facilitates
suppression of p53 activity. Mol Cell. 28:277–290. 2007. View Article : Google Scholar
|
33
|
Romeo-Guitart D, Leiva-Rodriguez T, Forés
J and Casas C: Improved motor nerve regeneration by
SIRT1/Hif1a-mediated autophagy. Cells. 8:13542019. View Article : Google Scholar
|
34
|
Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang
R, Cao L, Tang D and Duan X: miR-34a regulates autophagy and
apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy.
10:442–452. 2014. View Article : Google Scholar
|
35
|
Tanida I, Ueno T and Kominami E: LC3 and
autophagy. Methods Mol Biol. 445:77–88. 2008. View Article : Google Scholar
|
36
|
Fujiwara N, Usui T, Ohama T and Sato K:
Regulation of beclin 1 protein phosphorylation and autophagy by
protein phosphatase 2A (PP2A) and death-associated protein kinase
3. J Biol Chem. 13:10858–10866. 2016. View Article : Google Scholar
|
37
|
Letai AG: Diagnosing and exploiting
cancer's addiction to blocks in apoptosis. Nat Rev Cancer.
8:121–132. 2008. View Article : Google Scholar
|
38
|
Reyna DE, Garner TP, Lopez A, Kopp F,
Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B,
Bartholdy BA, et al: Direct activation of BAX by BTSA1 overcomes
apoptosis resistance in acute myeloid leukemia. Cancer Cell.
32:490–505.e10. 2017. View Article : Google Scholar
|
39
|
Shim MK, Yoon HY, Lee S, Jo MK, Park J,
Kim JH, Jeong SY, Kwon IC and Kim K: Caspase-3/-7-specific
metabolic precursor for bioorthogonal tracking of tumor apoptosis.
Sci Rep. 7:166352017. View Article : Google Scholar
|
40
|
Brentnall M, Rodriguez-Menocal L, De
Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and
caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell
Biol. 14:322013. View Article : Google Scholar
|
41
|
Maiuri M, Zalckvar E, Kimchi A and Kroemer
G: Self-eating and self-killing: Crosstalk between autophagy and
apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar
|
42
|
Misso G, Zarone MR, Lombardi A, Grimaldi
A, Cossu AM, Ferri C, Russo M, Vuoso DC, Luce A, Kawasaki H, et al:
miR-125b Upregulates miR-34a and sequentially activates stress
adaption and cell death mechanisms in multiple myeloma. Mol Ther
Nucleic Acids. 16:391–406. 2019. View Article : Google Scholar
|
43
|
Tian F, Wang J, Zhan Z and Yang J: lncRNA
SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation,
apoptosis and autophagy in osteoarthritis. Biol Res. 53:92020.
View Article : Google Scholar
|