1
|
Bartoschek M and Pietras K: PDGF family
function and prognostic value in tumor biology. Biochem Biophys Res
Commun. 503:984–990. 2018. View Article : Google Scholar
|
2
|
Heldin CH: Targeting the PDGF signaling
pathway in tumor treatment. Cell Commun Signal. 11:972013.
View Article : Google Scholar
|
3
|
Fredriksson L, Li H and Eriksson U: The
PDGF family: Four gene products form five dimeric isoforms.
Cytokine Growth Factor Rev. 15:197–204. 2004. View Article : Google Scholar
|
4
|
Roskoski R Jr: The role of small molecule
platelet-derived growth factor receptor (PDGFR) inhibitors in the
treatment of neoplastic disorders. Pharmacol Res. 129:65–83. 2018.
View Article : Google Scholar
|
5
|
Heldin CH, Lennartsson J and Westermark B:
Involvement of platelet-derived growth factor ligands and receptors
in tumorigenesis. J Intern Med. 283:16–44. 2018. View Article : Google Scholar
|
6
|
Cao Y: Multifarious functions of PDGFs and
PDGFRs in tumor growth and metastasis. Trends Mol Med. 19:460–473.
2013. View Article : Google Scholar
|
7
|
Martinho O, Longatto-Filho A, Lambros MB,
Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A,
Milanezi F, et al: Expression, mutation and copy number analysis of
platelet-derived growth factor receptor A (PDGFRA) and its ligand
PDGFA in gliomas. Br J Cancer. 101:973–982. 2009. View Article : Google Scholar
|
8
|
Nazarenko I, Hede SM, He X, Hedrén A,
Thompson J, Lindström MS and Nistér M: PDGF and PDGF receptors in
glioma. Ups J Med Sci. 117:99–112. 2012. View Article : Google Scholar
|
9
|
Saito Y, Haendeler J, Hojo Y, Yamamoto K
and Berk BC: Receptor heterodimerization: Essential mechanism for
platelet-derived growth factor-induced epidermal growth factor
receptor transactivation. Mol Cell Biol. 21:6387–6394. 2001.
View Article : Google Scholar
|
10
|
Andrae J, Gallini R and Betsholtz C: Role
of platelet-derived growth factors in physiology and medicine.
Genes Dev. 22:1276–1312. 2008. View Article : Google Scholar
|
11
|
Paulsson J, Sjöblom T, Micke P, Pontén F,
Landberg G, Heldin CH, Bergh J, Brennan DJ, Jirström K and Ostman
A: Prognostic significance of stromal platelet-derived growth
factor beta-receptor expression in human breast cancer. Am J
Pathol. 175:334–341. 2009. View Article : Google Scholar
|
12
|
Dhar K, Dhar G, Majumder M, Haque I, Mehta
S, Van Veldhuizen PJ, Banerjee SK and Banerjee S: Tumor
cell-derived PDGF-B potentiates mouse mesenchymal stem
cells-pericytes transition and recruitment through an interaction
with NRP-1. Mol Cancer. 9:2092010. View Article : Google Scholar
|
13
|
Krenzlin H, Behera P, Lorenz V, Passaro C,
Zdioruk M, Nowicki MO, Grauwet K, Zhang H, Skubal M, Ito H, et al:
Cytomegalovirus promotes murine glioblastoma growth via pericyte
recruitment and angiogenesis. J Clin Invest. 129:1671–1683. 2019.
View Article : Google Scholar
|
14
|
Ostman A: PDGF receptors-mediators of
autocrine tumor growth and regulators of tumor vasculature and
stroma. Cytokine Growth Factor Rev. 15:275–286. 2004. View Article : Google Scholar
|
15
|
Heldin CH: Autocrine PDGF stimulation in
malignancies. Ups J Med Sci. 117:83–91. 2012. View Article : Google Scholar
|
16
|
Malvezzi M, Bertuccio P, Rosso T, Rota M,
Levi F, La Vecchia C and Negri E: European cancer mortality
predictions for the year 2015: Does lung cancer have the highest
death rate in EU women? Ann Oncol. 26:779–786. 2015. View Article : Google Scholar
|
17
|
Ansari D, Tingstedt B, Andersson B,
Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M
and Andersson R: Pancreatic cancer: Yesterday, today and tomorrow.
Future Oncol. 12:1929–1946. 2016. View Article : Google Scholar
|
18
|
Frisch SM and Screaton RA: Anoikis
mechanisms. Curr Opin Cell Biol. 13:555–562. 2001. View Article : Google Scholar
|
19
|
Gupta P, Gupta N, Fofaria NM, Ranjan A and
Srivastava SK: HER2-mediated GLI2 stabilization promotes anoikis
resistance and metastasis of breast cancer cells. Cancer Lett.
442:68–81. 2019. View Article : Google Scholar
|
20
|
Khader S, Thyagarajan A and Sahu RP:
Exploring signaling pathways and pancreatic cancer treatment
approaches using genetic models. Mini Rev Med Chem. 19:1112–1125.
2019. View Article : Google Scholar
|
21
|
Bai Y, Bai Y, Dong J, Li Q, Jin Y, Chen B
and Zhou M: Hedgehog signaling in pancreatic fibrosis and cancer.
Medicine (Baltimore). 95:e29962016. View Article : Google Scholar
|
22
|
Fjällskog ML, Hessman O, Eriksson B and
Janson ET: Upregulated expression of PDGF receptor beta in
endocrine pancreatic tumors and metastases compared to normal
endocrine pancreas. Acta Oncol. 46:741–746. 2007. View Article : Google Scholar
|
23
|
Yuzawa S, Kano MR, Einama T and Nishihara
H: PDGFRβ expression in tumor stroma of pancreatic adenocarcinoma
as a reliable prognostic marker. Med Oncol. 29:2824–2830. 2012.
View Article : Google Scholar
|
24
|
Abe M, Kortylewicz ZP, Enke CA, Mack E and
Baranowska-Kortylewicz J: Activation of PDGFr-β signaling pathway
after imatinib and radioimmunotherapy treatment in experimental
pancreatic cancer. Cancers (Basel). 3:2501–2515. 2011. View Article : Google Scholar
|
25
|
Weissmueller S, Manchado E, Saborowski M,
Morris JP IV, Wagenblast E, Davis CA, Moon SH, Pfister NT,
Tschaharganeh DF, Kitzing T, et al: Mutant p53 drives pancreatic
cancer metastasis through cell-autonomous PDGF receptor β
signaling. Cell. 157:382–394. 2014. View Article : Google Scholar
|
26
|
Kuo TL, Cheng KH, Shan YS, Chen LT and
Hung WC: β-catenin-activated autocrine PDGF/Src signaling is a
therapeutic target in pancreatic cancer. Theranostics. 9:324–336.
2019. View Article : Google Scholar
|
27
|
Su A, He S, Tian B, Hu W and Zhang Z:
MicroRNA-221 mediates the effects of PDGF-BB on migration,
proliferation, and the epithelial-mesenchymal transition in
pancreatic cancer cells. PLoS One. 8:e713092013. View Article : Google Scholar
|
28
|
Hiram-Bab S, Katz LS, Shapira H, Sandbank
J, Gershengorn MC and Oron Y: Platelet-derived growth factor BB
mimics serum-induced dispersal of pancreatic epithelial cell
clusters. J Cell Physiol. 229:743–751. 2014. View Article : Google Scholar
|
29
|
Lee J, Lee J, Yun JH, Choi C, Cho S, Kim
SJ and Kim JH: Autocrine DUSP28 signaling mediates pancreatic
cancer malignancy via regulation of PDGF-A. Sci Rep. 7:127602017.
View Article : Google Scholar
|
30
|
Shen J, Vil MD, Zhang H, Tonra JR, Rong
LL, Damoci C, Prewett M, Deevi DS, Kearney J, Surguladze D, et al:
An antibody directed against PDGF receptor beta enhances the
antitumor and the anti-angiogenic activities of an anti-VEGF
receptor 2 antibody. Biochem Biophys Res Commun. 357:1142–1147.
2007. View Article : Google Scholar
|
31
|
Moench R, Grimmig T, Kannen V, Tripathi S,
Faber M, Moll EM, Chandraker A, Lissner R, Germer CT, Waaga-Gasser
AM and Gasser M: Exclusive inhibition of PI3K/Akt/mTOR signaling is
not sufficient to prevent PDGF-mediated effects on glycolysis and
proliferation in colorectal cancer. Oncotarget. 7:68749–68767.
2016. View Article : Google Scholar
|
32
|
Haemmerle M, Taylor ML, Gutschner T,
Pradeep S, Cho MS, Sheng J, Lyons YM, Nagaraja AS, Dood RL, Wen Y,
et al: Platelets reduce anoikis and promote metastasis by
activating YAP1 signaling. Nat Commun. 8:3102017. View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
34
|
Jenning S, Pham T, Ireland SK, Ruoslahti E
and Biliran H: Bit1 in anoikis resistance and tumor metastasis.
Cancer Lett. 333:147–151. 2013. View Article : Google Scholar
|
35
|
Ou C, Sun Z, Li S, Li G, Li X and Ma J:
Dual roles of yes-associated protein (YAP) in colorectal cancer.
Oncotarget. 8:75727–75741. 2017. View Article : Google Scholar
|
36
|
Hussein MR, Haemel AK and Wood GS:
Apoptosis and melanoma: Molecular mechanisms. J Pathol.
199:275–288. 2003. View Article : Google Scholar
|
37
|
Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong
S, Nan Y, Zhao Z, Zhong Y and Huang Q: IKBKE regulates cell
proliferation and epithelial-mesenchymal transition of human
malignant glioma via the Hippo pathway. Oncotarget. 8:49502–49514.
2017. View Article : Google Scholar
|
38
|
Zygulska AL, Krzemieniecki K and
Pierzchalski P: Hippo pathway-brief overview of its relevance in
cancer. J Physiol Pharmacol. 68:311–335. 2017.
|
39
|
Chen Q, Zhang N, Gray RS, Li H, Ewald AJ,
Zahnow CA and Pan D: A temporal requirement for Hippo signaling in
mammary gland differentiation, growth, and tumorigenesis. Genes
Dev. 28:432–437. 2014. View Article : Google Scholar
|
40
|
Piccolo S, Dupont S and Cordenonsi M: The
biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev.
94:1287–1312. 2014. View Article : Google Scholar
|
41
|
Zanconato F, Cordenonsi M and Piccolo S:
YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016.
View Article : Google Scholar
|
42
|
Hansen CG, Moroishi T and Guan KL: YAP and
TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol.
25:499–513. 2015. View Article : Google Scholar
|
43
|
Azzolin L, Panciera T, Soligo S, Enzo E,
Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V,
et al: YAP/TAZ incorporation in the β-catenin destruction complex
orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar
|
44
|
Fitamant J, Kottakis F, Benhamouche S,
Tian HS, Chuvin N, Parachoniak CA, Nagle JM, Perera RM, Lapouge M,
Deshpande V, et al: YAP inhibition restores hepatocyte
differentiation in advanced HCC, leading to tumor regression. Cell
Rep. 10:1692–1707. 2015. View Article : Google Scholar
|
45
|
Yuan WC, Pepe-Mooney B, Galli GG, Dill MT,
Huang HT, Hao M, Wang Y, Liang H, Calogero RA and Camargo FD: NUAK2
is a critical YAP target in liver cancer. Nat Commun. 9:48342018.
View Article : Google Scholar
|
46
|
Park JA and Kwon YG: Hippo-YAP/TAZ
signaling in angiogenesis. BMB Rep. 51:157–162. 2018. View Article : Google Scholar
|
47
|
Zhao B, Li L, Tumaneng K, Wang CY and Guan
KL: A coordinated phosphorylation by Lats and CK1 regulates YAP
stability through SCF (beta-TRCP). Genes Dev. 24:72–85. 2010.
View Article : Google Scholar
|
48
|
Lee YA, Noon LA, Akat KM, Ybanez MD, Lee
TF, Berres ML, Fujiwara N, Goossens N, Chou HI, Parvin-Nejad FP, et
al: Autophagy is a gatekeeper of hepatic differentiation and
carcinogenesis by controlling the degradation of Yap. Nat Commun.
9:49622018. View Article : Google Scholar
|
49
|
Ansari D, Ohlsson H, Althini C, Bauden M,
Zhou Q, Hu D and Andersson R: The Hippo signaling pathway in
pancreatic cancer. Anticancer Res. 39:3317–3321. 2019. View Article : Google Scholar
|
50
|
Ben Mimoun S and Mauviel A: Molecular
mechanisms underlying TGF-β/Hippo signaling crosstalks - Role of
baso-apical epithelial cell polarity. Int J Biochem Cell Biol.
98:75–81. 2018. View Article : Google Scholar
|
51
|
Dobrokhotov O, Samsonov M, Sokabe M and
Hirata H: Mechanoregulation and pathology of YAP/TAZ via Hippo and
non-Hippo mechanisms. Clin Transl Med. 7:232018. View Article : Google Scholar
|
52
|
Totaro A, Panciera T and Piccolo S:
YAP/TAZ upstream signals and downstream responses. Nat Cell Biol.
20:888–899. 2018. View Article : Google Scholar
|
53
|
Pei T, Li Y, Wang J, Wang H, Liang Y, Shi
H, Sun B, Yin D, Sun J, Song R, et al: YAP is a critical oncogene
in human cholangiocarcinoma. Oncotarget. 6:17206–17220. 2015.
View Article : Google Scholar
|
54
|
Gibault F, Corvaisier M, Bailly F, Huet G,
Melnyk P and Cotelle P: Non-photoinduced biological properties of
verteporfin. Curr Med Chem. 23:1171–1184. 2016. View Article : Google Scholar
|
55
|
Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong
J, Sun X and Li J: Verteporfin suppresses cell survival,
angiogenesis and vasculogenic mimicry of pancreatic ductal
adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci.
108:478–487. 2017. View Article : Google Scholar
|
56
|
Yang S, Zhang L, Purohit V, Shukla SK,
Chen X, Yu F, Fu K, Chen Y, Solheim J, Singh PK, et al: Active YAP
promotes pancreatic cancer cell motility, invasion and
tumorigenesis in a mitotic phosphorylation-dependent manner through
LPAR3. Oncotarget. 6:36019–36031. 2015. View Article : Google Scholar
|
57
|
Yamaguchi R, Lartigue L and Perkins G:
Targeting Mcl-1 and other Bcl-2 family member proteins in cancer
therapy. Pharmacol Ther. 195:13–20. 2019. View Article : Google Scholar
|
58
|
Boisvert-Adamo K, Longmate W, Abel EV and
Aplin AE: Mcl-1 is required for melanoma cell resistance to
anoikis. Mol Cancer Res. 7:549–556. 2009. View Article : Google Scholar
|
59
|
Su H, Si XY, Tang WR and Luo Y: The
regulation of anoikis in tumor invasion and metastasis. Yi Chuan.
35:10–16. 2013.(In Chinese). View Article : Google Scholar
|
60
|
Jang JW, Kim MK and Bae SC: Reciprocal
regulation of YAP/TAZ by the Hippo pathway and the Small GTPase
pathway. Small GTPases. 11:280–288. 2018. View Article : Google Scholar
|
61
|
Zhang J, Lauf PK and Adragna NC: PDGF
activates K-Cl cotransport through phosphoinositide 3-kinase and
protein phosphatase-1 in primary cultures of vascular smooth muscle
cells. Life Sci. 77:953–965. 2005. View Article : Google Scholar
|
62
|
Li L, Li J, Wang JY, Yang CQ, Jia ML and
Jiang W: Role of RhoA in platelet-derived growth factor-BB-induced
migration of rat hepatic stellate cells. Chin Med J (Engl).
123:2502–2509. 2010.
|
63
|
Smoot RL, Werneburg NW, Sugihara T,
Hernandez MC, Yang L, Mehner C, Graham RP, Bronk SF, Truty MJ and
Gores GJ: Platelet-derived growth factor regulates YAP
transcriptional activity via Src family kinase dependent tyrosine
phosphorylation. J Cell Biochem. 119:824–836. 2018. View Article : Google Scholar
|
64
|
Wu LMN, Deng Y, Wang J, Zhao C, Wang J,
Rao R, Xu L, Zhou W, Choi K, Rizvi TA, et al: Programming of
schwann cells by Lats1/2-TAZ/YAP signaling drives malignant
peripheral nerve sheath tumorigenesis. Cancer Cell. 33:292–308.e7.
2018. View Article : Google Scholar
|