1
|
Rowley JD: Letter: A new consistent
chromosomal abnormality in chronic myelogenous leukaemia identified
by quinacrine fluorescence and Giemsa staining. Nature.
243:290–293. 1973. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Goldman JM and Melo JV: Targeting the
BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med.
344:1084–1086. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Holyoake TL and Vetrie D: The chronic
myeloid leukemia stem cell: Stemming the tide of persistence.
Blood. 129:1595–1606. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pasic I and Lipton JH: Current approach to
the treatment of chronic myeloid leukaemia. Leukemia Res. 55:65–78.
2017. View Article : Google Scholar
|
5
|
Hehlmann R, Lauseker M, Sausele S,
Pfirrmann M, Krause SW, Kolb HJ, Neubauer A, Hossfeld DK, Nerl C,
Gratwohl A, et al: Assessment of imatinib as first-line treatment
of chronic myeloid leukemia: 10-year survival results of the
randomized CML study IV and impact of non-CML determinants.
Leukemia. 31:2398–2406. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Redaelli S, Mologni L, Rostagno R, Piazza
R, Magistroni V, Ceccon M, Viltadi M, Flynn D and
Gambacorti-Passerini C: Three novel patient-derived BCR/ABL mutants
show different sensitivity to second and third generation tyrosine
kinase inhibitors. Am J Hematol. 87:E125–E128. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Eide CA and Druker BJ: Understanding
cancer from the stem cells up. Nat Med. 23:656–657. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ashton JM, Balys M, Neering SJ, Hassane
DC, Cowley G, Root DE, Miller PG, Ebert BL, McMurray HR, Land H and
Jordan CT: Gene sets identified with oncogene cooperativity
analysis regulate in vivo growth and survival of leukemia stem
cells. Cell Stem Cell. 11:359–372. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Soverini S, Branford S, Nicolini FE,
Talpaz M, Deininger MW, Martinelli G, Müller MC, Radich JP and Shah
NP: Implications of BCR-ABL1 kinase domain-mediated resistance in
chronic myeloid leukemia. Leuk Res. 38:10–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou H, Mak PY, Mu H, Mak DH, Zeng Z,
Cortes J, Liu Q, Andreeff M and Carter BZ: Combined inhibition of
β-catenin and Bcr-Abl synergistically targets tyrosine kinase
inhibitor-resistant blast crisis chronic myeloid leukemia blasts
and progenitors in vitro and in vivo. Leukemia. 31:2065–2074. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Grassi S, Palumbo S, Mariottit V, Liberati
D, Guerrini F, Ciabatti E, Salehzadeh S, Baratè C, Balducci S,
Ricci F, et al: The WNT pathway is relevant for the
BCR-ABL1-independent resistance in chronic myeloid leukemia. Front
Oncol. 9:5322019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheloni G, Tanturli M, Tusa I, Ho DeSouza
N, Shan Y, Gozzini A, Mazurier F, Rovida E, Li S and Dello Sbarba
P: Targeting chronic myeloid leukemia stem cells with the
hypoxia-inducible factor inhibitor acriflavine. Blood. 130:655–665.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rothe K, Lin H, Lin KB, Leung A, Wang HM,
Malekesmaeili M, Brinkman RR, Forrest DL, Gorski SM and Jiang X:
The core autophagy protein ATG4B is a potential biomarker and
therapeutic target in CML stem/progenitor cells. Blood.
123:3622–3634. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y,
Du X, Li J, Li P, Ren R and Pan J: Targeting methyltransferase
PRMT5 eliminates leukemia stem cells in chronic myelogenous
leukemia. J Clin Invest. 126:3961–3980. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Abraham A, Qiu S, Chacko BK, Li H,
Paterson A, He J, Agarwal P, Shah M, Welner R, Darley-Usmar VM and
Bhatia R: SIRT1 regulates metabolism and leukemogenic potential in
CML stem cells. J Clin Invest. 129:2685–2701. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chandran RK, Geetha N, Sakthivel KM,
Aswathy CG, Gopinath P, Raj TV, Priya G, Nair J and Sreedharan H:
Genomic amplification of BCR-ABL1 fusion gene and its impact on the
disease progression mechanism in patients with chronic myelogenous
leukemia. Gene. 686:85–91. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen JR, Jia XH, Wang H, Yi YJ and Li YJ:
With no interaction, knockdown of Apollon and MDR1 reverse the
multidrug resistance of human chronic myelogenous leukemia K562/ADM
cells. Oncol Rep. 37:2735–2742. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
He B, Bai Y, Kang W, Zhang X and Jiang X:
LncRNA SNHG5 regulates imatinib resistance in chronic myeloid
leukemia via acting as a CeRNA against MiR-205-5p. Am J Cancer Res.
7:1704–1713. 2017.PubMed/NCBI
|
19
|
Mosimann C, Hausmann G and Basler K:
Beta-catenin hits chromatin: Regulation of Wnt target gene
activation. Nat Rev Mol Cell Biol. 10:276–286. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vlad A, Röhrs S, Klein-Hitpass L and
Müller O: The first five years of the Wnt targetome. Cell Signal.
20:795–802. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu SY, Li FY, Xing SJ, Zhao TY, Peng WQ
and Xue HH: Hematopoietic and leukemic stem cells have distinct
dependence on Tcf1 and Lef1 transcription factors. J Biol Chem.
291:11148–11160. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu XL, Tang XD, Guo W, Yang K and Ren TT:
TCF-1 participates in the occurrence of dedifferentiated
chondrosarcoma. Tumor Biol. 37:14129–14140. 2016. View Article : Google Scholar
|
23
|
Yin H, Sheng Z, Zhang X, Du Y, Qin C, Liu
H, Dun Y, Wang Q, Jin C, Zhao Y and Xu T: Overexpression of SOX18
promotes prostate cancer progression via the regulation of TCF1,
c-Myc, cyclin D1 and MMP-7. Oncol Rep. 37:1045–1051. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL,
Mouhieddine TH, Hadadeh O, Abou-Kheir W and Liu YN: MicroRNA-34a
regulates WNT/TCF7 signaling and inhibits bone metastasis in
Ras-activated prostate cancer. Oncotarget. 6:441–457. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Shiokawa D, Sato A, Ohata H, Mutoh M,
Sekine S, Kato M, Shibata T, Nakagama H and Okamoto K: The
induction of selected Wnt target genes by Tcf1 mediates generation
of tumorigenic colon stem cells. Cell Rep. 19:981–994. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu X, Liu X, Wu Y, Fang Z, Wu Q, Wu C,
Hao Y, Yang X, Zhao J, Li J, et al: MicroRNA-34a attenuates
metastasis and chemoresistance of bladder cancer cells by targeting
the TCF1/LEF1 axis. Cell Physiol Biochem. 48:87–98. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Siu MK, Chen WY, Tsai HY, Chen HY, Yin JJ,
Chen CL, Tsai YC and Liu YN: TCF7 is suppressed by the androgen
receptor via microRNA-1-mediated downregulation and is involved in
the development of resistance to androgen deprivation in prostate
cancer. Prostate Cancer Prostatic Dis. 20:172–178. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang T, Huang Z, Huang N, Peng Y, Gao M,
Wang X and Feng W: Inhibition of KPNB1 inhibits proliferation and
promotes apoptosis of chronic myeloid leukemia cells through
regulation of E2F1. Onco Targets Ther. 12:10455–10467. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Metsalu T and Vilo J: ClustVis: A web tool
for visualizing clustering of multivariate data using Principal
Component Analysis and heatmap. Nucleic Acids Res. 43:W566–W570.
2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Thorvaldsdóttir H, Robinson JT and Mesirov
JP: Integrative Genomics Viewer (IGV): High-performance genomics
data visualization and exploration. Brief Bioinform. 14:178–192.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cramer-Morales K, Nieborowska-Skorska M,
Scheibner K, Padget M, Irvine DA, Sliwinski T, Haas K, Lee J, Geng
H, Roy D, et al: Personalized synthetic lethality induced by
targeting RAD52 in leukemias identified by gene mutation and
expression profile. Blood. 122:1293–1304. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Radich JP, Dai H, Mao M, Oehler V,
Schelter J, Druker B, Sawyers C, Shah N, Stock W, Willman CL, et
al: Gene expression changes associated with progression and
response in chronic myeloid leukemia. Proc Natl Acad Sci USA.
103:2794–2799. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Giustacchini A, Thongjuea S, Barkas N,
Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira
A, Ashley N, et al: Single-cell transcriptomics uncovers distinct
molecular signatures of stem cells in chronic myeloid leukemia. Nat
Med. 23:692–702. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
König J, Nies AT, Cui YH, Leier I and
Keppler D: Conjugate export pumps of the multidrug resistance
protein (MRP) family: Localization, substrate specificity, and
MRP2-mediated drug resistance. Biochim Biophys Acta. 1461:377–394.
1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lian G, Yuan J and Gao Y: In vitro
transport ability of ABCC2 (G1249A) polymorphic variant towards
anticancer drugs. Onco Targets Ther. 13:1413–1419. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Marchetti S, de Vries NA, Buckle T, Bolijn
MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O and
Schellens JH: Effect of the ATP-binding cassette drug transporters
ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva)
disposition in in vitro and in vivo pharmacokinetic studies
employing Bcrp1(−/-)/Mdr1a/1b(−/-) (triple-knockout) and wild-type
mice. Mol Cancer Ther. 7:2280–2287. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kiyotani K, Mushiroda T, Imamura CK,
Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z,
Skaar TC, et al: Significant effect of polymorphisms in CYP2D6 and
ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast
cancer patients. J Clin Oncol. 28:1287–1293. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yevshin I, Sharipov R, Kolmykov S,
Kondrakhin Y and Kolpakov F: GTRD: A database on gene transcription
regulation-2019 update. Nucleic Acids Res. 47:D100–D105. 2019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Ng LF, Kaur P, Bunnag N, Suresh J, Sung
ICH, Tan QH, Gruber J and Tolwinski NS: WNT signaling in disease.
Cells. 8:8262019. View Article : Google Scholar
|
44
|
Schuijers J, Mokry M, Hatzis P, Cuppen E
and Clevers H: Wnt-induced transcriptional activation is
exclusively mediated by TCF/LEF. EMBO J. 33:146–156. 2014.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhan Y, Feng J, Lu J, Xu L, Wang W and Fan
S: Expression of LEF1 and TCF1 (TCF7) proteins associates with
clinical progression of nasopharyngeal carcinoma. J Clin Pathol.
72:425–430. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu XG, Liu ZX, Tian F, Xu J and Chen YM:
Clinical significance of transcription factor 7 (TCF7) as a
prognostic factor in gastric cancer. Med Sci Monit. 25:3957–3963.
2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kafka A, Bačić M, Tomas D, Žarković K,
Bukovac A, Njirić N, Mrak G, Krsnik Ž and Pećina-Šlaus N: Different
behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and
their association to TCF1 and LEF1 upregulation. J Cell Mol Med.
23:641–655. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Schneeweiss-Gleixner M, Byrgazov K,
Stefanzl G, Berger D, Eisenwort G, Lucini CB, Herndlhofer S,
Preuner S, Obrova K, Pusic P, et al: CDK4/CDK6 inhibition as a
novel strategy to suppress the growth and survival of
BCR-ABL1(T315I)+ clones in TKI-resistant CML. EBioMedicine.
50:111–121. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Eide CA, Zabriskie MS, Savage Stevens SL,
Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD,
Pomicter AD, et al: Combining the allosteric inhibitor asciminib
with ponatinib suppresses emergence of and restores efficacy
against highly resistant BCR-ABL1 mutants. Cancer Cell.
36:431–443.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Au A, Baba AA, Azlan H, Norsa'adah B and
Ankathil R: Clinical impact of ABCC1 and ABCC2 genotypes and
haplotypes in mediating imatinib resistance among chronic myeloid
leukaemia patients. J Clin Pharm Ther. 39:685–690. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Trojani A, Pungolino E, Dal Molin A,
Lodola M, Rossi G, D'Adda M, Perego A, Elena C, Turrini M, Borin L,
et al: Nilotinib interferes with cell cycle, ABC transporters and
JAK-STAT signaling pathway in CD34+/lin−
cells of patients with chronic phase chronic myeloid leukemia after
12 months of treatment. PLoS One. 14:e02184442019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mehrvar N, Abolghasemi H, Rezvany MR,
Esmaeil Akbari M, Saberynejad J, Mehrvar A, Ehsani MA, Nourian M,
Qaddoumi I and Movafagh A: Pattern of ABCC transporter gene
expression in pediatric patients with relapsed acute lymphoblastic
leukemia. Rep Biochem Mol Biol. 8:184–193. 2019.PubMed/NCBI
|