1
|
Vose JM: Mantle cell lymphoma: 2017 update
on diagnosis, risk-stratification, and clinical management. Am J
Hematol. 92:806–813. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Eskelund CW, Kolstad A, Jerkeman M, Räty
R, Laurell A, Eloranta S, Smedby KE, Husby S, Pedersen LB, Andersen
NS, et al: 15-Year follow-up of the second nordic mantle cell
lymphoma trial (MCL2): Prolonged remissions without survival
plateau. Br J Haematol. 175:410–418. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chihara D, Asano N, Ohmachi K, Kinoshita
T, Okamoto M, Maeda Y, Mizuno I, Matsue K, Uchida T, Nagai H, et
al: Prognostic model for mantle cell lymphoma in the rituximab era:
A nationwide study in Japan. Br J Haematol. 170:657–668. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dreyling M, Amador V, Callanan M, Jerkeman
M, Le Gouill S, Pott C, Rule S and Zaja F; European Mantle Cell
Lymphoma Network, : Update on the molecular pathogenesis and
targeted approaches of mantle cell lymphoma: Summary of the 12th
annual conference of the European mantle cell lymphoma network.
Leuk Lymphoma. 56:866–876. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prensner JR and Chinnaiyan AM: The
emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wapinski O and Chang HY: Long noncoding
RNAs and human disease. Trends Cell Biol. 21:354–361. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang X, Sehgal L, Jain N, Khashab T,
Mathur R and Samaniego F: LncRNA MALAT1 promotes development of
mantle cell lymphoma by associating with EZH2. J Transl Med.
14:3462016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mu G, Liu Q, Wu S, Xia Y and Fang Q: Long
noncoding RNA HAGLROS promotes the process of mantle cell lymphoma
by regulating miR-100/ATG5 axis and involving in PI3K/AKT/mTOR
signal. Artif Cells Nanomed Biotechnol. 47:3649–3656. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Fan Z, Wang X, Li P, Mei C, Zhang M and
Zhao C: Overexpression of lncRNA GATA6-AS inhibits cancer cell
proliferation in mantle cell lymphoma by downregulating GLUT1.
Oncol Lett. 18:2443–2447. 2019.PubMed/NCBI
|
10
|
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y,
Chen W, Liu F, Sun W, Li XF, et al: Exosome-transmitted lncARSR
promotes sunitinib resistance in renal cancer by acting as a
competing endogenous RNA. Cancer Cell. 29:653–668. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang L, Ge D, Chen X, Qiu J, Yin Z, Zheng
S and Jiang C: FOXP4-AS1 participates in the development and
progression of osteosarcoma by downregulating LATS1 via binding to
LSD1 and EZH2. Biochem Biophys Res Commun. 502:493–500. 2018.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu X, Xiao Y, Zhou Y, Zhou Z and Yan W:
LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of
prostate cancer by sequestering miR-3184-5p to upregulate FOXP4.
Cell Death Dis. 10:4722019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li J, Lian Y, Yan C, Cai Z, Ding J, Ma Z,
Peng P and Wang K: Long non-coding RNA FOXP4-AS1 is an unfavourable
prognostic factor and regulates proliferation and apoptosis in
colorectal cancer. Cell Prolif. 50:e123122017. View Article : Google Scholar
|
14
|
Li Y, Li T, Yang Y, Kang W, Dong S and
Cheng S: YY1-Induced upregulation of FOXP4-AS1 and FOXP4 promote
the proliferation of esophageal squamous cell carcinoma cells. Cell
Biol Int. 44:1447–1457. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao J, Yang T and Li L: LncRNA FOXP4-AS1
is involved in cervical cancer progression via regulating
miR-136-5p/CBX4 axis. Onco Targets Ther. 13:2347–2355. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Faiola F, Yin N, Fidalgo M, Huang X,
Saunders A, Ding J, Guallar D, Dang B and Wang J: NAC1 regulates
somatic cell reprogramming by controlling Zeb1 and E-cadherin
expression. Stem Cell Reports. 9:913–926. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ju T, Jin H, Ying R, Xie Q, Zhou C and Gao
D: Overexpression of NAC1 confers drug resistance via HOXA9 in
colorectal carcinoma cells. Mol Med Rep. 16:3194–3200. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nakayama N, Kato H, Sakashita G, Nariai Y,
Nakayama K, Kyo S and Urano T: Protein complex formation and
intranuclear dynamics of NAC1 in cancer cells. Arch Biochem
Biophys. 606:10–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fujii T, Shimada K, Tatsumi Y, Tanaka N,
Fujimoto K and Konishi N: Syndecan-1 up-regulates microRNA-331-3p
and mediates epithelial-to-mesenchymal transition in prostate
cancer. Mol Carcinog. 55:1378–1386. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rahman MT, Nakayama K, Rahman M, Katagiri
H, Katagiri A, Ishibashi T, Ishikawa M, Iida K, Nakayama N, Otsuki
Y, et al: Fatty acid synthase expression associated with NAC1 is a
potential therapeutic target in ovarian clear cell carcinomas. Br J
Cancer. 107:300–307. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tatemichi Y, Shibazaki M, Yasuhira S,
Kasai S, Tada H, Oikawa H, Suzuki Y, Takikawa Y, Masuda T and
Maesawa C: Nucleus accumbens associated 1 is recruited within the
promyelocytic leukemia nuclear body through SUMO modification.
Cancer Sci. 106:848–856. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sollier E, Cubizolles M, Fouillet Y and
Achard JL: Fast and continuous plasma extraction from whole human
blood based on expanding cell-free layer devices. Biomed
Microdevices. 12:485–497. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cao C, Zhang T, Zhang D, Xie L, Zou X, Lei
L, Wu D and Liu L: The long non-coding RNA, SNHG6-003, functions as
a competing endogenous RNA to promote the progression of
hepatocellular carcinoma. Oncogene. 36:1112–1122. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin H, Lin T, Lin J, Yang M, Shen Z, Liu
H, Zou Z and Zheng Z: Inhibition of miR-423-5p suppressed prostate
cancer through targeting GRIM-19. Gene. 688:93–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang X, Zeng X, Huang Y, Chen S, Lin F,
Yang G and Yang N: MiR-423-5p serves as a diagnostic indicator and
inhibits the proliferation and invasion of ovarian cancer. Exp Ther
Med. 15:4723–4730. 2018.PubMed/NCBI
|
27
|
Wang X, Peng L, Gong X, Zhang X, Sun R and
Du J: MiR-423-5p inhibits osteosarcoma proliferation and invasion
through directly targeting STMN1. Cell Physiol Biochem.
50:2249–2259. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fang Z, Tang J, Bai Y, Lin H, You H, Jin
H, Lin L, You P, Li J, Dai Z, et al: Plasma levels of microRNA-24,
microRNA-320a, and microRNA-423-5p are potential biomarkers for
colorectal carcinoma. J Exp Clin Cancer Res. 34:862015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vanacore D, Boccellino M, Rossetti S,
Cavaliere C, D'Aniello C, Di Franco R, Romano FJ, Montanari M, La
Mantia E, Piscitelli R, et al: Micrornas in prostate cancer: An
overview. Oncotarget. 8:50240–50251. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang C, Chen X, Alattar M, Wei J and Liu
H: MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis
of gastric cancer. Cancer Gene Ther. 22:291–301. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nana-Sinkam SP and Croce CM: MicroRNA
regulation of tumorigenesis, cancer progression and interpatient
heterogeneity: Towards clinical use. Genome Biol. 15:4452014.
View Article : Google Scholar : PubMed/NCBI
|