1
|
Justus CR, Dong L and Yang LV: Acidic
tumor microenvironment and pH-sensing G protein-coupled receptors.
Front Physiol. 4:3542013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J,
Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg
JM, Sloane BF, et al: Acidity generated by the tumor
microenvironment drives local invasion. Cancer Res. 73:1524–1535.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Damaghi M, Wojtkowiak JW and Gillies RJ:
pH sensing and regulation in cancer. Front Physiol. 4:3702013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kato Y, Ozawa S, Miyamoto C, Maehata Y,
Suzuki A, Maeda T and Baba Y: Acidic extracellular microenvironment
and cancer. Cancer Cell Int. 13:89–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boedtkjer E and Pedersen SF: The acidic
tumor microenvironment as a driver of cancer. Annu Rev Physiol.
82:103–126. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rofstad EK, Mathiesen B, Kindem K and
Galappathi K: Acidic extracellular pH promotes experimental
metastasis of human melanoma cells in athymic nude mice. Cancer
Res. 66:6699–6707. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nishisho T, Hata K, Nakanishi M, Morita Y,
Sun-Wada GH, Wada Y, Yasui N and Yoneda T: The a3 isoform vacuolar
type H(+)-ATPase promotes distant metastasis in the mouse B16
melanoma cells. Mol Cancer Res. 9:845–855. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Waugh DJ and Wilson C: The interleukin-8
pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zarogoulidis P, Katsikogianni F, Tsiouda
T, Sakkas A, Katsikogiannis N and Zarogoulidis K: Interleukin-8 and
interleukin-17 for cancer. Cancer Invest. 32:197–205. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Srivastava SK, Bhardwaj A, Arora S, Tyagi
N, Singh AP, Carter JE, Scammell JG, Fodstad Ø and Singh S:
Interleukin-8 is a key mediator of FKBP51-induced melanoma growth,
angiogenesis and metastasis. Br J Cancer. 112:1772–1781. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Nakanishi M, Morita Y, Hata K and Muragaki
Y: Acidic microenvironments induce lymphangiogenesis and IL-8
production via TRPV1 activation in human lymphatic endothelial
cells. Exp Cell Res. 345:180–189. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Caterina MJ, Schumacher MA, Tominaga M,
Rosen TA, Levine JD and Julius D: The capsaicin receptor: A
heat-activated ion channel in the pain pathway. Nature.
389:816–824. 1997. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Nakanishi M, Hata K, Nagayama T, Sakurai
T, Nishisho T, Wakabayashi H, Hiraga T, Ebisu S and Yoneda T: Acid
activation of Trpv1 leads to an up-regulation of calcitonin
gene-related peptide expression in dorsal root ganglion neurons via
the CaMK-CREB cascade: A potential mechanism of inflammatory pain.
Mol Biol Cell. 21:2568–2577. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoneda T, Hata K, Nakanishi M, Nagae M,
Nagayama T, Wakabayashi H, Nishisho T, Sakurai T and Hiraga T:
Involvement of acidic microenvironment in the pathophysiology of
cancer-associated bone pain. Bone. 48:100–105. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sherwood TW, Frey EN and Askwith CC:
Structure and activity of the acid-sensing ion channels. Am J
Physiol Cell Physiol. 303:C699–C710. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu Y, Gao B, Xiong Q, Wang Y, Huang D and
Wu W-N: Acid sensing ion channels contribute to the effect of
extracellular acidosis in proliferation and migration of A549
cells. Tumour Biol. 39:10104283177057502017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li
X, Chen J-Y, Jin Y, Hu Z-L, Wang F, et al: ASIC1 and ASIC3
contribute to acidity-induced EMT of pancreatic cancer through
activating Ca(2+)/RhoA pathway. Cell Death Dis. 8:e28062017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Rooj AK, McNicholas CM, Bartoszewski R,
Bebok Z, Benos DJ and Fuller CM: Glioma-specific cation conductance
regulates migration and cell cycle progression. J Biol Chem.
287:4053–4065. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tian Y, Bresenitz P, Reska A, El Moussaoui
L, Beier CP and Gründer S: Glioblastoma cancer stem cell lines
express functional acid sensing ion channels ASIC1a and ASIC3. Sci
Rep. 7:136742017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Berdiev BK, Xia J, McLean LA, Markert JM,
Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji H-L, et
al: Acid-sensing ion channels in malignant gliomas. J Biol Chem.
278:15023–15034. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kapoor N, Bartoszewski R, Qadri YJ, Bebok
Z, Bubien JK, Fuller CM and Benos DJ: Knockdown of ASIC1 and
epithelial sodium channel subunits inhibits glioblastoma whole cell
current and cell migration. J Biol Chem. 284:24526–24541. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gatenby RA and Gawlinski ET: A
reaction-diffusion model of cancer invasion. Cancer Res.
56:5745–5753. 1996.PubMed/NCBI
|
23
|
Stubbs M, McSheehy PM, Griffiths JR and
Bashford CL: Causes and consequence of tumour acidity and
implications for treatment. Mol Med Today. 6:15–19. 2000.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hashim AI, Zhang X, Wojtkowiak JW,
Martinez GV and Gillies RJ: Imaging pH and metastasis. NMR Biomed.
24:582–591. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wemmie JA, Taugher RJ and Kreple CJ:
Acid-sensing ion channels in pain and disease. Nat Rev Neurosci.
14:461–471. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Matsuo T and Sadzuka Y: Extracellular
acidification by lactic acid suppresses glucose deprivation-induced
cell death and autophagy in B16 melanoma cells. Biochem Biophys Res
Commun. 496:1357–1361. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
de la Cruz-López KG, Castro-Muñoz LJ,
Reyes-Hernández DO, García-Carrancá A and Manzo-Merino J: Lactate
in the regulation of tumor microenvironment and therapeutic
approaches. Front Oncol. 9:11432019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen B, Liu J, Ho TT, Ding X and Mo YY:
ERK-mediated NF-kappaB activation through ASIC1 in response to
acidosis. Oncogenesis. 5:e2792016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Böhme I and Bosserhoff A: Extracellular
acidosis triggers a senescence-like phenotype in human melanoma
cells. Pigment Cell Melanoma Res. 33:41–51. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wojtkowiak JW, Rothberg JM, Kumar V,
Schramm KJ, Haller E, Proemsey JB, Lloyd MC, Sloane BF and Gillies
RJ: Chronic autophagy is a cellular adaptation to tumor acidic pH
microenvironments. Cancer Res. 72:3938–3947. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Végran F, Boidot R, Michiels C, Sonveaux P
and Feron O: Lactate influx through the endothelial cell
monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway
that drives tumor angiogenesis. Cancer Res. 71:2550–2560. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Brat DJ, Bellail AC and Van Meir EG: The
role of interleukin-8 and its receptors in gliomagenesis and
tumoral angiogenesis. Neuro-oncol. 7:122–133. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pecze L, Josvay K, Blum W, Petrovics G,
Vizler C, Oláh Z and Schwaller B: Activation of endogenous TRPV1
fails to induce overstimulation-based cytotoxicity in breast and
prostate cancer cells but not in pain-sensing neurons. Biochim
Biophys Acta. 1863:2054–2064. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Weber LV, Al-Refae K, Wölk G, Bonatz G,
Altmüller J, Becker C, Gisselmann G and Hatt H: Expression and
functionality of TRPV1 in breast cancer cells. Breast Cancer (Dove
Med Press). 8:243–252. 2016.PubMed/NCBI
|
35
|
Lozano C, Córdova C, Marchant I, Zúñiga R,
Ochova P, Ramírez-Barrantes R, González-Arriagada WA, Rodriguez B
and Olivero P: Intracellular aggregated TRPV1 is associated with
lower survival in breast cancer patients. Breast Cancer (Dove Med
Press). 10:161–168. 2018.PubMed/NCBI
|
36
|
So CL, Milevskiy MJG and Monteith GR:
Transient receptor potential cation channel subfamily V and breast
cancer. Lab Invest. 100:199–206. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Singh LS, Berk M, Oates R, Zhao Z, Tan H,
Jiang Y, Zhou A, Kirmani K, Steinmetz R, Lindner D, et al: Ovarian
cancer G protein-coupled receptor 1, a new metastasis suppressor
gene in prostate cancer. J Natl Cancer Inst. 99:1313–1327. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li J, Guo B, Wang J, Cheng X, Xu Y and
Sang J: Ovarian cancer G protein coupled receptor 1 suppresses cell
migration of MCF7 breast cancer cells via a
Gα12/13-Rho-Rac1 pathway. J Mol Signal. 8:62013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang J, Che L, Sun W, Shang J, Hao M and
Tian M: Correlation of OGR1 with proliferation and apoptosis of
breast cancer cells. Oncol Lett. 17:4335–4340. 2019.PubMed/NCBI
|
40
|
Gupta SC, Singh R, Asters M, Liu J, Zhang
X, Pabbidi MR, Watabe K and Mo Y-Y: Regulation of breast
tumorigenesis through acid sensors. Oncogene. 35:4102–4111. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
García-Cañaveras JC, Chen L and Rabinowitz
JD: The tumor metabolic microenvironment: Lessons from lactate.
Cancer Res. 79:3155–3162. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kolesnik DL, Pyaskovskaya ON and Solyanik
GI: Impact of lactic acidosis on the survival of Lewis lung
carcinoma cells. Exp Oncol. 39:112–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Romero-Garcia S, Prado-Garcia H,
Valencia-Camargo AD and Alvarez-Pulido A: Lactic acidosis promotes
mitochondrial biogenesis in lung adenocarcinoma cells, supporting
proliferation under normoxia or survival under hypoxia. Front
Oncol. 9:10532019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pinheiro C, Garcia EA, Morais-Santon F,
Scapulatempo-Neto C, Mafra A, Steenbergen RDM, Boccardo E, Villa
LL, Baltazar F and Longatto-Filho A: Lactate transporters and
vascular factors in HPV-induced squamous cell carcinoma of the
uterine cervix. BMC Cancer. 14:7512014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Roland CL, Arumugam T, Deng D, Liu SH,
Philip B, Gomez S, Burns WR, Ramachandran V, Wang H,
Cruz-Monserrate Z, et al: Cell surface lactate receptor GPR81 is
crucial for cancer cell survival. Cancer Res. 74:5301–5310. 2014.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q,
Saghatelian A, Siegwart DJ and Wan Y: Gpr132 sensing of lactate
mediates tumor-macrophage interplay to promote breast cancer
metastasis. Proc Natl Acad Sci USA. 114:580–585. 2017. View Article : Google Scholar : PubMed/NCBI
|