Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)
- Authors:
- Kaili Luo
- Lei Zhang
- Yuan Liao
- Hongyu Zhou
- Hongying Yang
- Min Luo
- Chen Qing
-
Affiliations: School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China - Published online on: January 7, 2021 https://doi.org/10.3892/or.2021.7927
- Pages: 824-834
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Correction: Mitochondrial sirtuins in cancer: Emerging roles and therapeutic potential. Cancer Res. 76:36552016. View Article : Google Scholar : PubMed/NCBI | |
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT and Di Fiore PP: Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12:3799–3808. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K, Kraus MH and Di Fiore PP: Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene. 9:3057–3061. 1994.PubMed/NCBI | |
Tocchetti A, Confalonieri S, Scita G, Di Fiore PP and Betsholtz C: In silico analysis of the EPS8 gene family: Genomic organization, expression profile, and protein structure. Genomics. 81:234–244. 2003. View Article : Google Scholar : PubMed/NCBI | |
Di Fiore PP and Scita G: Eps8 in the midst of GTPases. Int J Biochem Cell Biol. 34:1178–1183. 2002. View Article : Google Scholar : PubMed/NCBI | |
Offenhäuser N, Borgonovo A, Disanza A, Romano P, Ponzanelli I, Iannolo G, Di Fiore PP and Scita G: The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol Biol Cell. 15:91–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maa MC, Hsieh CY and Leu TH: Overexpression of p97Eps8 leads to cellular transformation: Implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene. 20:106–112. 2001. View Article : Google Scholar : PubMed/NCBI | |
Avantaggiato V, Torino A, Wong WT, Di Fiore PP and Simeone A: Expression of the receptor tyrosine kinase substrate genes eps8 and eps15 during mouse development. Oncogene. 11:1191–1198. 1995.PubMed/NCBI | |
Ion A, Crosby AH, Kremer H, Kenmochi N, Van Reen M, Fenske C, Van Der Burgt I, Brunner HG, Montgomery K, Kucherlapati RS, et al: Detailed mapping, mutation analysis, and intragenic polymorphism identification in candidate Noonan syndrome genes MYL2, DCN, EPS8, and RPL6. J Med Genet. 37:884–886. 2000. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, et al: Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 98:15044–15049. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, et al: Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62:6278–6288. 2002.PubMed/NCBI | |
Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, Huang CC, Chow NH and Leu TH: Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem. 282:19399–19409. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welsch T, Endlich K, Giese T, Büchler MW and Schmidt J: Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett. 255:205–218. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Shen MR, Chen YJ, Maa MC and Leu TH: Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther. 7:1376–1385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP, Lopes V, Wei W, Thomas GJ and Paterson IC: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene. 28:2524–2534. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K and Wierman ME: Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: Role in proliferation and survival. Endocrinology. 150:2064–2671. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bashir M, Kirmani D, Bhat HF, Baba RA, Hamza R, Naqash S, Wani NA, Andrabi KI, Zargar MA and Khanday FA: P66shc and its downstream Eps8 and Rac1 proteins are upregulated in esophageal cancers. Cell Commun Signal. 8:132010. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wu X, Pan ZK and Huang S: Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 70:9979–9990. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chu PY, Liou JH, Lin YM, Chen CJ, Chen MK, Lin SH, Yeh CM, Wang HK, Maa MC, Leu TH, et al: Expression of Eps8 correlates with poor survival in oral squamous cell carcinoma. Asia Pac J Clin Oncol. 8:e77–e81. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, Han M, Ding X and Xiang S: Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol. 46:205–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Jiao X, Kuang F, Hou B, Zhu Y, Guo W, Sun G, Ba Y, Yu D, Wang D, et al: FoxO3a inhibiting expression of EPS8 to prevent progression of NSCLC: A new negative loop of EGFR signaling. EBioMedicine. 40:198–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Lu YB and Guan QL: EPS8 is a potential oncogene in glioblastoma. Onco Targets Ther. 12:10523–10534. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H, Kita Y, Kawasaki Y, Tanoue K, Mataki Y, et al: Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: The clinical significance of oncogenic EPS8. J Hum Genet. 64:521–534. 2019. View Article : Google Scholar : PubMed/NCBI | |
He YZ, Liang Z, Wu MR, Wen Q, Deng L, Song CY, Wu BY, Tu SF, Huang R and Li YH: Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 39:575–581. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Liu H, Chen Y, He Y, Kang Q, Tu S, He Y, Zhou X, Wang L, Yang J, et al: EPS8 regulates proliferation, apoptosis and chemosensitivity in BCR-ABL positive cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep. 39:119–128. 2018.PubMed/NCBI | |
Chen Y, Xie X, Wu A, Wang L, Hu Y, Zhang H and Li Y: A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J Exp Clin Cancer Res. 37:122018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhou L, Zhou W, Xie X, Wu M, Chen Y, Hu Y, Du J, He Y and Li Y: EPS8-mediated regulation of multiple myeloma cell growth and survival. Am J Cancer Res. 9:1622–1634. 2019.PubMed/NCBI | |
Behlouli A, Bonnet C, Abdi S, Bouaita A, Lelli A, Hardelin JP, Schietroma C, Rous Y, Louha M, Cheknane A, et al: EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness. Orphanet J Rare Dis. 9:552014. View Article : Google Scholar : PubMed/NCBI | |
Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA and Campbell ID: Solution structure and peptide binding of the SH3 domain from human Fyn. Structure. 4:705–714. 1996. View Article : Google Scholar : PubMed/NCBI | |
Matoskova B, Wong WT, Salcini AE, Pelicci PG and Di Fiore PP: Constitutive phosphorylation of eps8 in tumor cell lines: Relevance to malignant transformation. Mol Cell Biol. 15:3805–3812. 1995. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, et al: Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). FEBS Lett. 586:1759–1764. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegård M, Betsholtz C and Di Fiore PP: EPS8 and E3B1 transduce signals from Ras to Rac. Nature. 401:290–293. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M and Di Fiore PP: The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature. 408:374–377. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kishan KV, Newcomer ME, Rhodes TH and Guilliot SD: Effect of pH and salt bridges on structural assembly: Molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Protein Sci. 10:1046–1055. 2001. View Article : Google Scholar : PubMed/NCBI | |
Inobe M, Ki K, Miyagoe Y, Yi N and Takeda S: Identification of EPS8 as a Dvl1-associated molecule. Biochem Biophys Res Commun. 266:216–221. 1999. View Article : Google Scholar : PubMed/NCBI | |
Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T and Miki H: IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res. 64:5237–5244. 2004. View Article : Google Scholar : PubMed/NCBI | |
Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, Berhoerster K, Kreienkamp HJ, Milanesi F, Di Fiore PP, et al: Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8:1337–1347. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prieto-Echagüe V, Chan PM, Craddock BP, Manser E and Miller WT: PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS One. 6:e192962011. View Article : Google Scholar : PubMed/NCBI | |
Forman-Kay JD and Pawson T: Diversity in protein recognition by PTB domains. Curr Opin Struct Biol. 9:690–695. 1999. View Article : Google Scholar : PubMed/NCBI | |
Slupsky CM, Gentile LN, Donaldson LW, Mackereth CD, Seidel JJ, Graves BJ and McIntosh LP: Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc Natl Acad Sci USA. 95:12129–12134. 1998. View Article : Google Scholar : PubMed/NCBI | |
Castagnino P, Biesova Z, Wong WT, Fazioli F, Gill GN and Di Fiore PP: Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene. 10:723–729. 1995.PubMed/NCBI | |
Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP and Scita G: Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol. 6:1180–1188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M and Di Fiore PP: An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol. 154:1031–1044. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kirkland G, Paizis K, Wu LL, Katerelos M and Power DA: Heparin-binding EGF-like growth factor mRNA is upregulated in the peri-infarct region of the remnant kidney model: In vitro evidence suggests a regulatory role in myofibroblast transformation. J Am Soc Nephrol. 9:1464–1473. 1998.PubMed/NCBI | |
Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E and Wang B: Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol. 3:527–530. 2001. View Article : Google Scholar : PubMed/NCBI | |
Carpenter G and Cohen S: Epidermal growth factor. Annu Rev Biochem. 48:193–216. 1979. View Article : Google Scholar : PubMed/NCBI | |
Buday L and Downward J: Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 73:611–620. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ozanne B, Richards CS, Hendler F, Burns D and Gusterson B: Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J Pathol. 149:9–14. 1986. View Article : Google Scholar : PubMed/NCBI | |
Rubin Grandis J, Zeng Q and Drenning SD: Epidermal growth factor receptor-mediated stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope. 110:868–874. 2000. View Article : Google Scholar : PubMed/NCBI | |
Song JI and Grandis JR: STAT signaling in head and neck cancer. Oncogene. 19:2489–2895. 2000. View Article : Google Scholar : PubMed/NCBI | |
Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS and Tweardy DJ: Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest. 102:1385–1392. 1998. View Article : Google Scholar : PubMed/NCBI | |
Minden A, Lin A, McMahon M, Lange-Carter C, Dérijard B, Davis RJ, Johnson GL and Karin M: Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science. 266:1719–1723. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL and Karin M: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science. 268:286–290. 1995. View Article : Google Scholar : PubMed/NCBI | |
Minden A, Lin A, Claret FX, Abo A and Karin M: Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 81:1147–1157. 1995. View Article : Google Scholar : PubMed/NCBI | |
Schaller MD, Borgman CA and Parsons JT: Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol Cell Biol. 13:785–791. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hanks SK, Calalb MB, Harper MC and Patel SK: Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci USA. 89:8487–8491. 1992. View Article : Google Scholar : PubMed/NCBI | |
Parsons JT: Focal adhesion kinase: The first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hanks SK, Ryzhova L, Shin NY and Brábek J: Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 8:d982–d996. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J and Jove R: Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 269:81–83. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bromberg JF, Horvath CM, Besser D, Lathem WW and Darnell JE Jr: Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 18:2553–2558. 1998. View Article : Google Scholar : PubMed/NCBI | |
Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP and Jove R: Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol. 18:2545–2552. 1998. View Article : Google Scholar : PubMed/NCBI | |
Leu TH, Yeh HH, Huang CC, Chuang YC, Su SL and Maa MC: Participation of p97Eps8 in Src-mediated transformation. J Biol Chem. 279:9875–9881. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maa MC, Lai JR, Lin RW and Leu TH: Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta. 1450:341–351. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sachdev S, Bu Y and Gelman IH: Paxillin-Y118 phosphorylation contributes to the control of Src-induced anchorage-independent growth by FAK and adhesion. BMC Cancer. 9:122009. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI | |
Koo CY, Muir KW and Lam EW: FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 1819:28–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H and Medema RH: FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 7:126–136. 2005. View Article : Google Scholar : PubMed/NCBI | |
Costa RH: FoxM1 dances with mitosis. Nat Cell Biol. 7:108–110. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kwok CT, Leung MH, Qin J, Qin Y, Wang J, Lee YL and Yao KM: The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res. 16:651–661. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, The MT, Ji Y, Patel V, Firouzabadian S, Patel AA, Gutkind JS and Yeudall WA: EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis. 31:1132–1141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ngan AWL, Grace Tsui M, So DHF, Leung WY, Chan DW and Yao KM: Novel nuclear partnering role of EPS8 with FOXM1 in regulating cell proliferation. Front Oncol. 9:1542019. View Article : Google Scholar : PubMed/NCBI | |
Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP and Scita G: Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol. 160:17–23. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chiu CF, Chang YW, Kuo KT, Shen YS, Liu CY, Yu YH, Cheng CC, Lee KY, Chen FC, Hsu MK, et al: NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci USA. 113:E2526–E2535. 2016. View Article : Google Scholar : PubMed/NCBI | |
Accili D and Arden KC: FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 117:421–426. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hall A: Rho GTPases and the actin cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hall A and Nobes CD: Rho GTPases: Molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 355:965–970. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P and Huang S: Lysophosphatidic acid stimulates ovarian cancer cell migration via a ras-MEK kinase 1 pathway. Cancer Res. 64:4209–4217. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG and Der CJ: Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol. 4:621–625. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D, et al: Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem. 277:44417–44430. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nimnual AS, Yatsula BA and Bar-Sagi D: Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 279:560–563. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tod J, Hanley CJ, Morgan MR, Rucka M, Mellows T, Lopez MA, Kiely P, Moutasim KA, Frampton SJ, Sabnis D, et al: Pro-migratory and TGF-β-activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8-dependent GTPase switch. J Pathol. 243:37–50. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nasri E, Wiesen LB, Knapik JA and Fredenburg KM: Eps8 expression is significantly lower in p16+ head and neck squamous cell carcinomas (HNSCCs) compared with p16- HNSCCs. Hum Pathol. 72:45–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cattaneo MG, Cappellini E and Vicentini LM: Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines. Exp Cell Res. 318:1901–1912. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jesionowska A, Cecerska-Heryc E, Matoszka N and Dolegowska B: Lysophosphatidic acid signaling in ovarian cancer. J Recept Signal Transduct Res. 35:578–584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pua TL, Wang FQ and Fishman DA: Roles of LPA in ovarian cancer development and progression. Future Oncol. 5:1659–1673. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, Hasegawa Y, Tanyi JL, LaPushin R, Eder A, et al: Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 1582:257–264. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X and Mills GB: Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 100:1630–1642. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wu X, Chen W, Liu J and Wang X: The lysophosphatidic acid (LPA) receptors their expression and significance in epithelial ovarian neoplasms. Gynecol Oncol. 104:714–720. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pierre S, Bats AS and Coumoul X: Understanding SOS (Son of Sevenless). Biochem Pharmacol. 82:1049–1056. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmidt A and Hall A: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587–1609. 2002. View Article : Google Scholar : PubMed/NCBI | |
Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP and Scita G: Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol. 156:125–136. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kotula L: Abi1, a critical molecule coordinating actin cytoskeleton reorganization with PI-3 kinase and growth signaling. FEBS Lett. 586:2790–2794. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan PD and Goff SP: Abl interactor 1 binds to sos and inhibits epidermal growth factor- and v-Abl-induced activation of extracellular signal-regulated kinases. Mol Cell Biol. 20:7591–7601. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stone TA and Deber CM: Therapeutic design of peptide modulators of protein-protein interactions in membranes. Biochim Biophys Acta Biomembr. 1859:577–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cunningham AD, Qvit N and Mochly-Rosen D: Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol. 44:59–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
Helmer D and Schmitz K: Peptides and peptide analogs to inhibit protein-protein interactions. Adv Exp Med Biol. 917:147–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fosgerau K and Hoffmann T: Peptide therapeutics: Current status and future directions. Drug Discov Today. 20:122–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ellert-Miklaszewska A, Poleszak K and Kaminska B: Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem. 9:199–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bae DG, Kim TD, Li G, Yoon WH and Chae CB: Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis. Clin Cancer Res. 11:2651–2561. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Liang C, Zhang Y, Zhang W and Chen H: Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells. BMC Cancer. 19:8782019. View Article : Google Scholar : PubMed/NCBI | |
Raftopoulou M and Hall A: Cell migration: Rho GTPases lead the way. Dev Biol. 265:23–32. 2004. View Article : Google Scholar : PubMed/NCBI | |
Miki H, Yamaguchi H, Suetsugu S and Takenawa T: IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 408:732–735. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu PS, Jong TH, Maa MC and Leu TH: The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene. 29:3977–3989. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Patel V, Miyazaki H, Gutkind JS and Yeudall WA: Role for EPS8 in squamous carcinogenesis. Carcinogenesis. 30:165–174. 2009. View Article : Google Scholar : PubMed/NCBI | |
McCawley LJ, Li S, Wattenberg EV and Hudson LG: Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem. 274:4347–4353. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu WW, Meng J, Cui J and Luan YS: Characterization and Function of MicroRNA*s in Plants. Front Plant Sci. 8:22002017. View Article : Google Scholar : PubMed/NCBI | |
Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J and Sung JJ: MicroRNA dysregulation in gastric cancer: A new player enters the game. Oncogene. 29:5761–5771. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Xue H, Wang Y, Shen Q, Jiang Q, Zhang X, Li K, Jia M, Jia J, Xu J and Tian Y: miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol. 50:975–983. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ying X, Zhang W, Fang M, Zhang W, Wang C and Han L: miR-345-5p regulates proliferation, cell cycle, and apoptosis of acute myeloid leukemia cells by targeting AKT2. J Cell Biochem. 2018:(Epub ahead of print). | |
Feng A, Yuan X and Li X: MicroRNA-345 inhibits metastasis and epithelial-mesenchymal transition of gastric cancer by targeting FOXQ1. Oncol Rep. 38:2752–2760. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang C, Yan S, Yang Y, Zhang X and Guo W: miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8. Acta Biochim Biophys Sin (Shanghai). 52:259–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D and Xie K: Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 69:3501–3509. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kedmi M, Ben-Chetrit N, Körner C, Mancini M, Ben-Moshe NB, Lauriola M, Lavi S, Biagioni F, Carvalho S, Cohen-Dvashi H, et al: EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer. Sci Signal. 8:ra292015. View Article : Google Scholar : PubMed/NCBI | |
Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R and Westerhout EM: FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res. 73:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gorsic LK, Stark AL, Wheeler HE, Wong SS, Im HK and Dolan ME: EPS8 inhibition increases cisplatin sensitivity in lung cancer cells. PLoS One. 8:e822202013. View Article : Google Scholar : PubMed/NCBI | |
Smolensky D, Rathore K, Bourn J and Cekanova M: Inhibition of the PI3K/AKT Pathway Sensitizes Oral Squamous Cell Carcinoma Cells to Anthracycline-Based Chemotherapy In Vitro. J Cell Biochem. 118:2615–2624. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhao X, Sun R, Ou J, Huang J, Yang N, Xu T, Li J, He X, Li C, et al: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS. J Extracell Vesicles. 10:e120032020. View Article : Google Scholar : PubMed/NCBI | |
Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slomovitz BM and Coleman RL: The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 18:5856–5864. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol. 137:173–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Narayanankutty A: PI3K/Akt/ mTOR Pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets. 20:1217–1226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, et al: The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 39:2042020. View Article : Google Scholar : PubMed/NCBI | |
Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P and Ferrone S: Immunotherapy of cancer in 2012. CA Cancer J Clin. 62:309–335. 2012. View Article : Google Scholar : PubMed/NCBI | |
Novellino L, Castelli C and Parmiani G: A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 54:187–207. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Zhou W, Hu Y, Chen Y, Zhang H and Li Y: A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis. 9:3792018. View Article : Google Scholar : PubMed/NCBI | |
He YJ, Zhou J, Zhao TF, Hu LS, Gan JY, Deng L and Li Y: Eps8 vaccine exerts prophylactic antitumor effects in a murine model: A novel vaccine for breast carcinoma. Mol Med Rep. 8:662–668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Cai SH, Xiong WY, He YJ, Deng L and Li YH: Real-time quantitative polymerase chain reaction assay for detecting the eps8 gene in acute myeloid leukemia. Clin Lab. 59:1261–1269. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun P, Zhou X, He Y, Liu H, Wang Y, Chen Y, Li M, He Y, Li G and Li Y: Effect of trichostatin A on Burkitt's lymphoma cells: Inhibition of EPS8 activity through Phospho-Erk1/2 pathway. Biochem Biophys Res Commun. 497:990–996. 2018. View Article : Google Scholar : PubMed/NCBI |