1
|
Moreau P, San Miguel J, Sonneveld P,
Mateos MV, Zamagni E, Avet-Loiseau H, Hajek R, Dimopoulos MA,
Ludwig H, Einsele H, et al ESMO Guidelines Committee, : Multiple
myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment
and follow-up. Ann Oncol. 28 (Suppl_4):iv52–iv61. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Merz AMA, Merz M, Hillengass J, Holstein
SA and McCarthy P: The evolving role of maintenance therapy
following autologous stem cell transplantation in multiple myeloma.
Expert Rev Anticancer Ther. 19:889–898. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gandolfi S, Vekstein C, Laubach JP,
O'Brien A, Masone K, Munshi NC, Anderson KC and Richardson PG: The
evolving role of transplantation in multiple myeloma: The need for
a heterogeneous approach to a heterogeneous disease. Clin Adv
Hematol Oncol. 16:564–574. 2018.PubMed/NCBI
|
4
|
Robiou du Pont S, Cleynen A, Fontan C,
Attal M, Munshi N, Corre J and Avet-Loiseau H: Genomics of Multiple
Myeloma. J Clin Oncol. 35:963–967. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chim CS, Kumar SK, Orlowski RZ, Cook G,
Richardson PG, Gertz MA, Giralt S, Mateos MV, Leleu X and Anderson
KC: Correction: Management of relapsed and refractory multiple
myeloma: novel agents, antibodies, immunotherapies and beyond.
Leukemia. 33:1058–1059. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Brioli A, Klaus M, Sayer H, Scholl S,
Ernst T, Hilgendorf I, Scherag A, Yomade O, Schilling K, Hochhaus
A, et al: The risk of infections in multiple myeloma before and
after the advent of novel agents: A 12-year survey. Ann Hematol.
98:713–722. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Marino S, Petrusca DN and Roodman GD:
Therapeutic targets in myeloma bone disease. Br J Pharmacol. Oct
24–2019.(Epub ahead of print). doi: 10.1111/bph.14889. PubMed/NCBI
|
8
|
Webb SL and Edwards CM: Novel therapeutic
targets in myeloma bone disease. Br J Pharmacol. 171:3765–3776.
2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Barwick BG, Gupta VA, Vertino PM and Boise
LH: Cell of Origin and Genetic Alterations in the Pathogenesis of
Multiple Myeloma. Front Immunol. 10:11212019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Moreau P, Attal M and Facon T: Frontline
therapy of multiple myeloma. Blood. 125:3076–3084. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yaqub S, Ballester G and Ballester O:
Frontline therapy for multiple myeloma: A concise review of the
evidence based on randomized clinical trials. Cancer Invest.
31:529–537. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Greig SL: Panobinostat: A Review in
Relapsed or Refractory Multiple Myeloma. Target Oncol. 11:107–114.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hideshima T, Richardson PG and Anderson
KC: Mechanism of action of proteasome inhibitors and deacetylase
inhibitors and the biological basis of synergy in multiple myeloma.
Mol Cancer Ther. 10:2034–2042. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Harada T, Ohguchi H, Grondin Y, Kikuchi S,
Sagawa M, Tai YT, Mazitschek R, Hideshima T and Anderson KC: HDAC3
regulates DNMT1 expression in multiple myeloma: Therapeutic
implications. Leukemia. 31:2670–2677. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pourhanifeh MH, Mahjoubin-Tehran M,
Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H and Asemi Z:
MicroRNAs and exosomes: Small molecules with big actions in
multiple myeloma pathogenesis. IUBMB Life. 72:314–333. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Van Rechem C and Whetstine JR: Examining
the impact of gene variants on histone lysine methylation. Biochim
Biophys Acta. 1839:1463–1476. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang X, Liu L, Yuan X, Wei Y and Wei X:
JMJD3 in the regulation of human diseases. Protein Cell.
10:864–882. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu
Y and Price BD: DNA double-strand breaks promote methylation of
histone H3 on lysine 9 and transient formation of repressive
chromatin. Proc Natl Acad Sci USA. 111:9169–9174. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li N and Jiang D: Jumonji domain
containing 2C promotes cell migration and invasion through
modulating CUL4A expression in lung cancer. Biomed Pharmacother.
89:305–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Agger K, Miyagi S, Pedersen MT, Kooistra
SM, Johansen JV and Helin K: Jmjd2/Kdm4 demethylases are required
for expression of Il3ra and survival of acute myeloid leukemia
cells. Genes Dev. 30:1278–1288. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Nilsson K, Bennich H, Johansson SG and
Pontén J: Established immunoglobulin producing myeloma (IgE) and
lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin
Exp Immunol. 7:477–489. 1970.PubMed/NCBI
|
24
|
Pellat-Deceunynk C, Amiot M, Bataille R,
van Riet I, van Camp B, Omede P and Boccadoro M: Human myeloma cell
lines as a tool for studying the biology of multiple myeloma: A
reappraisal 18 years after. Blood 86: 4001, 1995. Published Erratum
Blood. 131:1542018.PubMed/NCBI
|
25
|
Gazdar AF, Oie HK, Kirsch IR and Hollis
GF: Establishment and characterization of a human plasma cell
myeloma culture having a rearranged cellular myc proto-oncogene.
Blood. 67:1542–1549. 1986. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kanasugi J, Hanamura I, Ota A, Karnan S,
Lam VQ, Mizuno S, Wahiduzzaman M, Rahman ML, Hyodo T, Konishi H, et
al: Biallelic loss of FAM46C triggers tumor growth with concomitant
activation of Akt signaling in multiple myeloma cells. Cancer Sci.
111:1663–1675. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wahiduzzaman M, Ota A, Karnan S, Hanamura
I, Mizuno S, Kanasugi J, Rahman ML, Hyodo T, Konishi H, Tsuzuki S,
et al: Novel combined Ato-C treatment synergistically suppresses
proliferation of Bcr-Abl-positive leukemic cells in vitro and in
vivo. Cancer Lett. 433:117–130. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Soriano AA, de Cristofaro T, Di Palma T,
Dotolo S, Gokulnath P, Izzo A, Calì G, Facchiano A and Zannini M:
PAX8 expression in high-grade serous ovarian cancer positively
regulates attachment to ECM via Integrin β3. Cancer Cell Int.
19:3032019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hui RC, Francis RE, Guest SK, Costa JR,
Gomes AR, Myatt SS, Brosens JJ and Lam EW: Doxorubicin activates
FOXO3a to induce the expression of multidrug resistance gene ABCB1
(MDR1) in K562 leukemic cells. Mol Cancer Ther. 7:670–678. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Palumbo A, Avet-Loiseau H, Oliva S,
Lokhorst HM, Goldschmidt H, Rosinol L, Richardson P, Caltagirone S,
Lahuerta JJ, Facon T, et al: Revised International Staging System
for Multiple Myeloma: A Report From International Myeloma Working
Group. J Clin Oncol. 33:2863–2869. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Szász AM, Lánczky A, Nagy Á, Förster S,
Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A and Győrffy B:
Cross-validation of survival associated biomarkers in gastric
cancer using transcriptomic data of 1,065 patients. Oncotarget.
7:49322–49333. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Abdel-Magid AF: Wnt/β-Catenin Signaling
Pathway Inhibitors: A Promising Cancer Therapy. ACS Med Chem Lett.
5:956–957. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Daugherty RL and Gottardi CJ:
Phospho-regulation of Beta-catenin adhesion and signaling
functions. Physiology (Bethesda). 22:303–309. 2007.PubMed/NCBI
|
34
|
Liu G, Bollig-Fischer A, Kreike B, van de
Vijver MJ, Abrams J, Ethier SP and Yang ZQ: Genomic amplification
and oncogenic properties of the GASC1 histone demethylase gene in
breast cancer. Oncogene. 28:4491–4500. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kahl P, Gullotti L, Heukamp LC, Wolf S,
Friedrichs N, Vorreuther R, Solleder G, Bastian PJ, Ellinger J,
Metzger E, et al: Androgen receptor coactivators lysine-specific
histone demethylase 1 and four and a half LIM domain protein 2
predict risk of prostate cancer recurrence. Cancer Res.
66:11341–11347. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ye Q, Holowatyj A, Wu J, Liu H, Zhang L,
Suzuki T and Yang ZQ: Genetic alterations of KDM4 subfamily and
therapeutic effect of novel demethylase inhibitor in breast cancer.
Am J Cancer Res. 5:1519–1530. 2015.PubMed/NCBI
|
37
|
Nusse R and Clevers H: Wnt/β-Catenin
Signaling, Disease, and Emerging Therapeutic Modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
van Andel H, Kocemba KA, Spaargaren M and
Pals ST: Aberrant Wnt signaling in multiple myeloma: Molecular
mechanisms and targeting options. Leukemia. 33:1063–1075. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang H, Gong Y, Liang L, Xiao L, Yi H, Ye
M, Roy M, Xia J, Zhou W, Yang C, et al: Lycorine targets multiple
myeloma stem cell-like cells by inhibition of Wnt/β-catenin
pathway. Br J Haematol. 189:1151–1164. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Su N, Wang P and Li Y: Role of
Wnt/β-catenin pathway in inducing autophagy and apoptosis in
multiple myeloma cells. Oncol Lett. 12:4623–4629. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Schmeel LC, Schmeel FC, Kim Y, Endo T, Lu
D and Schmidt-Wolf IG: Targeting the Wnt/beta-catenin pathway in
multiple myeloma. Anticancer Res. 33:4719–4726. 2013.PubMed/NCBI
|
42
|
Yamamoto S, Tateishi K, Kudo Y, Yamamoto
K, Isagawa T, Nagae G, Nakatsuka T, Asaoka Y, Ijichi H, Hirata Y,
et al: Histone demethylase KDM4C regulates sphere formation by
mediating the cross talk between Wnt and Notch pathways in colonic
cancer cells. Carcinogenesis. 34:2380–2388. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Guo L, Guo YY, Li BY, Peng WQ and Tang QQ:
Histone demethylase KDM5A is transactivated by the transcription
factor C/EBPβ and promotes preadipocyte differentiation by
inhibiting Wnt/β-catenin signaling. J Biol Chem. 294:9642–9654.
2019. View Article : Google Scholar : PubMed/NCBI
|