1
|
Balkwill FR, Capasso M and Hagemann T: The
tumor microenvironment at a glance. J Cell Sci. 125:5591–5596.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dysthe M and Parihar R: Myeloid-derived
suppressor cells in the tumor microenvironment. Tumor
Microenvironment: Hematopoietic Cells-Part A. Birbrair A: Springer
International Publishing; Cham: pp. 117–140. 2020, View Article : Google Scholar
|
3
|
Achyut BR and Arbab AS: Myeloid derived
suppressor cells: Fuel the fire. Biochem Physiol. 3:e123.
2014.PubMed/NCBI
|
4
|
Arbab AS, Rashid MH, Angara K, Borin TF,
Lin PC, Jain M and Achyut BR: Major challenges and potential
microenvironment-targeted therapies in glioblastoma. Int J Mol Sci.
18:27322017. View Article : Google Scholar
|
5
|
Safarzadeh E, Hashemzadeh S, Duijf PHG,
Mansoori B, Khaze V, Mohammadi A, Kazemi T, Yousefi M, Asadi M,
Mohammadi H, et al: Circulating myeloid-derived suppressor cells:
An independent prognostic factor in patients with breast cancer. J
Cell Physiol. 234:3515–3525. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Trac N.T..Chung E.J.: Peptide-based
targeting of immunosuppressive cells in cancer. Bioactive
Materials. 5:92–101. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lechner MG, Liebertz DJ and Epstein AL:
Characterization of cytokine-induced myeloid-derived suppressor
cells from normal human peripheral blood mononuclear cells. J
Immunol. 185:2273–2284. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bronte V, Brandau S, Chen SH, Colombo MP,
Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A,
Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived
suppressor cell nomenclature and characterization standards. Nat
Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang Z, Guo J, Weng L, Tang W, Jin S and
Ma W: Myeloid-derived suppressor cells-new and exciting players in
lung cancer. J Hematol Oncol. 13:102020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Corzo CA, Cotter MJ, Cheng P, Cheng F,
Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC and
Gabrilovich DI: Mechanism regulating reactive oxygen species in
tumor-induced myeloid-derived suppressor cells. J Immunol.
182:5693–5701. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bruno A, Mortara L, Baci D, Noonan DM and
Albini A: Myeloid derived suppressor cells interactions with
natural killer cells and pro-angiogenic activities: Roles in tumor
progression. Front Immunol. 10:7712019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dai J, El Gazzar M, Li GY, Moorman JP and
Yao ZQ: Myeloid-derived suppressor cells: Paradoxical roles in
infection and immunity. J Innate Immun. 7:116–126. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Geiger R, Rieckmann JC, Wolf T, Basso C,
Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et
al: L-arginine modulates T cell metabolism and enhances survival
and anti-tumor activity. Cell. 167:829–842.e13. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sinha P, Clements VK, Bunt SK, Albelda SM
and Ostrand-Rosenberg S: Cross-talk between myeloid-derived
suppressor cells and macrophages subverts tumor immunity toward a
type 2 response. J Immunol. 179:977–983. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ostrand-Rosenberg S and Fenselau C:
Myeloid-derived suppressor cells: Immune-suppressive cells that
impair antitumor immunity and are sculpted by their environment. J
Immunol. 200:422–431. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rashid MH, Borin TF, Ara R, Angara K, Cai
J, Achyut BR, Liu Y and Arbab AS: Differential in vivo
biodistribution of 131I-labeled exosomes from diverse
cellular origins and its implication for theranostic application.
Nanomedicine. 21:1020722019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rashid MH, Borin TF, Ara R, Alptekin A,
Liu Y and Arbab AS: Generation of novel diagnostic and therapeutic
exosomes to detect and deplete protumorigenic M2 macrophages. Adv
Ther (Weinh). 3:19002092020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Du R, Lu KV, Petritsch C, Liu P, Ganss R,
Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z and Bergers G:
HIF1alpha induces the recruitment of bone marrow-derived vascular
modulatory cells to regulate tumor angiogenesis and invasion.
Cancer Cell. 13:206–220. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hiratsuka S, Watanabe A, Aburatani H and
Maru Y: Tumour-mediated upregulation of chemoattractants and
recruitment of myeloid cells predetermines lung metastasis. Nat
Cell Biol. 8:1369–1375. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pawelek JM and Chakraborty AK: Fusion of
tumour cells with bone marrow-derived cells: A unifying explanation
for metastasis. Nat Rev Cancer. 8:377–386. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Umansky V, Blattner C, Gebhardt C and
Utikal J: The role of myeloid-derived suppressor cells (MDSC) in
cancer progression. Vaccines (Basel). 4:362016. View Article : Google Scholar
|
22
|
Yang L, Huang J, Ren X, Gorska AE, Chytil
A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC and Moses
HL: Abrogation of TGF beta signaling in mammary carcinomas recruits
Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell.
13:23–35. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pollard JW: Tumour-educated macrophages
promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78.
2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
De Palma M, Venneri MA, Galli R, Sergi
Sergi L, Politi LS, Sampaolesi M and Naldini L: Tie2 identifies a
hematopoietic lineage of proangiogenic monocytes required for tumor
vessel formation and a mesenchymal population of pericyte
progenitors. Cancer Cell. 8:211–226. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Conejo-Garcia JR, Buckanovich RJ, Benencia
F, Courreges MC, Rubin SC, Carroll RG and Coukos G: Vascular
leukocytes contribute to tumor vascularization. Blood. 105:679–681.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nozawa H, Chiu C and Hanahan D:
Infiltrating neutrophils mediate the initial angiogenic switch in a
mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA.
103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ohl K and Tenbrock K: Reactive oxygen
species as regulators of MDSC-mediated immune suppression. Front
Immunol. 9:24992018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma J, Xu H and Wang S: Immunosuppressive
role of myeloid-derived suppressor cells and therapeutic targeting
in lung cancer. J Immunol Res. 2018:63196492018. View Article : Google Scholar : PubMed/NCBI
|
29
|
De Maio A: Extracellular heat shock
proteins, cellular export vesicles, and the stress observation
system: A form of communication during injury, infection, and cell
damage. It is never known how far a controversial finding will go!
Dedicated to Ferruccio Ritossa. Cell Stress Chaperones. 16:235–249.
2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kucharzewska P and Belting M: Emerging
roles of extracellular vesicles in the adaptive response of tumour
cells to microenvironmental stress. J Extracell Vesicles. 2:2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
McAndrews KM and Kalluri R: Mechanisms
associated with biogenesis of exosomes in cancer. Mol Cancer.
18:522019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Haverkamp JM, Crist SA, Elzey BD, Cimen C
and Ratliff TL: In vivo suppressive function of myeloid-derived
suppressor cells is limited to the inflammatory site. Eur J
Immunol. 41:749–759. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao F, Obermann S, von Wasielewski R,
Haile L, Manns MP, Korangy F and Greten TF: Increase in frequency
of myeloid-derived suppressor cells in mice with spontaneous
pancreatic carcinoma. Immunology. 128:141–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sevko A and Umansky V: Myeloid-derived
suppressor cells interact with tumors in terms of myelopoiesis,
tumorigenesis and immunosuppression: Thick as thieves. J Cancer.
4:3–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Veglia F, Perego M and Gabrilovich D:
Myeloid-derived suppressor cells coming of age. Nat Immunol.
19:108–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ouzounova M, Lee E, Piranlioglu R, El
Andaloussi A, Kolhe R, Demirci MF, Marasco D, Asm I, Chadli A,
Hassan KA, et al: Monocytic and granulocytic myeloid derived
suppressor cells differentially regulate spatiotemporal tumour
plasticity during metastatic cascade. Nat Commun. 8:149792017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao F, Liang B, Reddy ST, Farias-Eisner R
and Su X: Role of inflammation-associated microenvironment in
tumorigenesis and metastasis. Curr Cancer Drug Targets. 14:30–45.
2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mou W, Xu Y, Ye Y, Chen S, Li X, Gong K,
Liu Y, Chen Y, Li X, Tian Y, et al: Expression of Sox2 in breast
cancer cells promotes the recruitment of M2 macrophages to tumor
microenvironment. Cancer Lett. 358:115–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dijkgraaf EM, Heusinkveld M, Tummers B,
Vogelpoel LT, Goedemans R, Jha V, Nortier JW, Welters MJ, Kroep JR
and van der Burg SH: Chemotherapy alters monocyte differentiation
to favor generation of cancer-supporting M2 macrophages in the
tumor microenvironment. Cancer Res. 73:2480–2492. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Allavena P, Sica A, Solinas G, Porta C and
Mantovani A: The inflammatory micro-environment in tumor
progression: The role of tumor-associated macrophages. Crit Rev
Oncol Hematol. 66:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sikora E: Activation-induced and
damage-induced cell death in aging human T cells. Mech Ageing Dev.
151:85–92. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Andersen MH, Schrama D, Thor Straten P and
Becker JC: Cytotoxic T Cells. J Invest Dermatol. 126:32–41. 2006.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Hildeman DA, Mitchell T, Kappler J and
Marrack P: T cell apoptosis and reactive oxygen species. J Clin
Invest. 111:575–581. 2003. View Article : Google Scholar : PubMed/NCBI
|