CD155/TIGIT, a novel immune checkpoint in human cancers (Review)
- Authors:
- Lu Liu
- Xuewu You
- Sai Han
- Yu Sun
- Junhua Zhang
- Youzhong Zhang
-
Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China - Published online on: January 19, 2021 https://doi.org/10.3892/or.2021.7943
- Pages: 835-845
This article is mentioned in:
Abstract
Trapani J and Darcy P: Immunotherapy of cancer. Aust Fam Physician. 46:194–199. 2017.PubMed/NCBI | |
Willimsky G and Blankenstein T: Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 437:141–146. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X, Lei L, Shan Z and Li N: The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine Growth Factor Rev. 52:1–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 8:328rv3242016. View Article : Google Scholar | |
Smyth MJ, Ngiow SF, Ribas A and Teng MWL: Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H, et al: Advances in cancer immunotherapy 2019-latest trends. J Exp Clin Cancer Res. 38:2682019. View Article : Google Scholar : PubMed/NCBI | |
Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, et al: Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat Rev Clin Oncol. 16:563–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Darvin P, Toor SM, Nair VS and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1652018. View Article : Google Scholar | |
Sharma P and Allison JP: Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dougall WC, Kurtulus S, Smyth MJ and Anderson AC: TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 276:112–120. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A and Takai Y: Nectin-Like molecule-1/TSLL1/SynCAM3: A neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci. 118:1267–1277. 2005. View Article : Google Scholar : PubMed/NCBI | |
Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN and Peles E: A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci. 10:861–869. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, et al: TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 27:427–430. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fujito T, Ikeda W, Kakunaga S, Minami Y, Kajita M, Sakamoto Y, Monden M and Takai Y: Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of necl-5 with nectin-3. J Cell Biol. 171:165–173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takai Y, Miyoshi J, Ikeda W and Ogita H: Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T and Nomoto A: The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9:3217–3224. 1990. View Article : Google Scholar : PubMed/NCBI | |
Oda T, Ohka S and Nomoto A: Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun. 319:1253–1264. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yusa Si, Catina TL and Campbell KS: SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J Immunol. 168:5047–5057. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lange R, Peng X, Wimmer E, Lipp M and Bernhardt G: The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology. 285:218–227. 2001. View Article : Google Scholar : PubMed/NCBI | |
Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, et al: DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med. 199:1331–1341. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kakunaga S, Ikeda W, Shingai T, Fujito T, Yamada A, Minami Y, Imai T and Takai Y: Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by necl-5/tage4/poliovirus receptor/CD155 through the ras-raf-MEK-ERK signaling. J Biol. 27:36419–36425. 2004. | |
Molfetta R, Zitti B, Lecce M, Milito ND, Stabile H, Fionda C, Cippitelli M, Gismondi A, Santoni A and Paolini R: CD155: A multi-functional molecule in tumor progression. Int J Mol Sci. 21:9222020. View Article : Google Scholar | |
Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 10:48–57. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deuss FA, Watson GM, Fu Z, Rossjohn J and Berry R: Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155. Structure. 5:219–228. 2019. View Article : Google Scholar | |
Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P, Mazzarino MC, D'Amico F, et al: Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 3:882–892. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and Hayashi Y: Overexpression of necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N and Nakajima Y: Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 35:2287–2297. 2015.PubMed/NCBI | |
Smazynski J, Hamilton PT, Thornton S, Milne K, Wouters MC, Webb JR and Nelson BH: The immune suppressive factors CD155 and PD-L1 show contrasting expression patterns and immune correlates in ovarian and other cancers. Gynecol Oncol. 158:167–177. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, et al: Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: Evidence for the involvement of the poliovirus receptor (CD155) and nectin-2 (CD112). Blood. 105:2066–2073. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 97:6803–6808. 2000. View Article : Google Scholar : PubMed/NCBI | |
Huang DW, Huang M, Lin XS and Huang Q: CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. Onco Targets Ther. 10:3817–3825. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, Wu H, Bu LL, Kulkarni AB, Zhang WF and Sun ZJ: Blockade of TIGIT/CD155 signaling reverses t-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. 7:1700–1713. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H and Shibuya A: Increased soluble CD155 in the serum of cancer patients. PLoS One. 11:e01529822016. View Article : Google Scholar : PubMed/NCBI | |
Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, et al: ATM-ATR-Dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 113:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Soriani A, Fionda C, Ricci B, Iannitto ML, Cippitelli M and Santoni A: Chemotherapy-Elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. Oncoimmunology. 2:e266632014. View Article : Google Scholar | |
Lee JH and Paull TT: Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vauzour D, Vafeiadou K, Rice-Evans C, Cadenas E and Spencer JP: Inhibition of cellular proliferation by the genistein metabolite 5,7,3′,4′-tetrahydroxyisoflavone is mediated by DNA damage and activation of the ATR signalling pathway. Arch Biochem Biophys. 468:159–166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hirota T, Irie K, Okamoto R, Ikeda W and Takai Y: Transcriptional activation of the mouse necl-5/tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic ras through the raf-MEK-ERK-AP-1 pathway. Oncogene. 24:2229–2235. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rimkus TK, Carpenter RL, Qasem S, Chan M and Lo HW: Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers (Basel). 8:222016. View Article : Google Scholar | |
Athar M, Li C, Kim AL, Spiegelman VS and Bickers DR: Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res. 74:4967–4975. 2014. View Article : Google Scholar : PubMed/NCBI | |
Solecki DJ, Gromeier M, Mueller S, Bernhardt G and Wimmer E: Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J Biol Chem. 277:25697–25702. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Das I, Lepletier A, Addala V, Bald T, Stannard K, Barkauskas D, Liu J, Aguilera AR, Takeda K, et al: CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest. 128:2613–2625. 2018. View Article : Google Scholar : PubMed/NCBI | |
Escalante NK, von Rossum A, Lee M and Choy JC: CD155 on human vascular endothelial cells attenuates the acquisition of effector functions in CD8 T cells. Arterioscler Thromb Vasc Biol. 31:1177–1184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JSB and Gasser S: Toll-Like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One. 8:e544062013. View Article : Google Scholar : PubMed/NCBI | |
Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P, et al: Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: Relevance for natural killer-dendritic cell interaction. Blood. 107:2030–2036. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ and Colonna M: DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med. 205:2965–2973. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gumbiner BM: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell. 84:345–357. 1996. View Article : Google Scholar : PubMed/NCBI | |
Minami Y, Ikeda W, Kajita M, Fujito T, Amano H, Tamaru Y, Kuramitsu K, Sakamoto Y, Monden M and Takai Y: Necl-5/Poliovirus receptor interacts in cis with integrin alphaVbeta3 and regulates its clustering and focal complex formation. J Biol Chem. 282:18481–18496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amano H, Ikeda W, Kawano S, Kajita M, Tamaru Y, Inoue N, Minami Y, Yamada A and Takai Y: Interaction and localization of necl-5 and PDGF receptor beta at the leading edges of moving NIH3T3 cells: Implications for directional cell movement. Genes Cells. 13:269–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata Ki and Takai Y: Sequential activation of rap1 and rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 13:549–569. 2008. View Article : Google Scholar : PubMed/NCBI | |
Christofori G: Split personalities: The agonistic antagonist sprouty. Nat Cell Biol. 5:377–379. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ and Bar-Sagi D: Modulation of signalling by sprouty: A developing story. Nat Rev Mol Cell Biol. 5:441–450. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reich A, Sapir A and Shilo B: Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 126:4139–4147. 1999.PubMed/NCBI | |
Zheng Q, Wang B, Gao J, Xin N, Wang W, Song X, Shao Y and Zhao C: CD155 knockdown promotes apoptosis via AKT/bcl-2/bax in colon cancer cells. J Cell Mol Med. 22:131–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, et al: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 106:17858–17863. 2009. View Article : Google Scholar : PubMed/NCBI | |
Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H and Zheng H: T-Cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 22:3057–3066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen Th, Maurer M, Korman AJ and Zarour HM: TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 125:2046–2058. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M and Stannard K: TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood. 132:1689–1694. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee WJ, Lee YJ, Choi ME, Yun KA, Won CH, Lee MW, Choi JH and Chang SE: Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes. J Am Acad Dermatol. 81:219–227. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Brien SM, Klampatsa A, Thompson JC, Martinez MC, Hwang WT, Rao AS, Standalick JE, Kim S, Cantu E, Litzky LA, et al: Function of human tumor-infiltrating lymphocytes in early-stage non-small cell lung cancer. Cancer Immunol Res. 7:896–909. 2019. View Article : Google Scholar : PubMed/NCBI | |
He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W, et al: CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 77:6375–6388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang Y, Xun X, Wang S, Xiang X, Hu S, Cheng Q, Guo J, Li Z and Zhu J: TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro. J Immunother. 43:236–243. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, et al: CD226 opposes TIGIT to disrupt tregs in melanoma. JCI Insight. 26:e1211572018. View Article : Google Scholar | |
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stålhammar G, Seregard S and Grossniklaus HE: Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med. 8:2784–2792. 2019.PubMed/NCBI | |
Tang W, Pan X, Han D, Rong D, Zhang M, Yang L, Ying J, Guan H, Chen Z and Wang X: Clinical significance of CD8+ T cell immunoreceptor with Ig and ITIM domains+ in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. Oncoimmunology. 8:e15938072019. View Article : Google Scholar : PubMed/NCBI | |
Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A, Gorvel L and Olive D: Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front Immunol. 10:8772019. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhao W, Li H, Chen Y, Tian H, Li L, Zhang L, Gao C and Zheng J: Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother. 65:305–314. 2016. View Article : Google Scholar : PubMed/NCBI | |
Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH and Kuchroo VK: Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 186:1338–1342. 2011. View Article : Google Scholar : PubMed/NCBI | |
Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, et al: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 40:569–581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lozano E, Dominguez-Villar M, Kuchroo V and Hafler DA: The TIGIT/CD226 axis regulates human T cell function. J Immunol. 188:3869–3875. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Vlaeminck Y, González-Rascón A, Goyvaerts C and Breckpot K: Cancer-Associated myeloid regulatory cells. Front Immunol. 7:1132016. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B and Fan Z: Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 20:456–464. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B and Pei G: Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell. 14:303–317. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Deng L, Ea CK, Xia ZP and Chen ZJ: The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 14:289–301. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen ZJ: Ubiquitination in signaling to and activation of IKK. Immunol Rev. 246:95–106. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asaoka Y, Ijichi H and Koike K: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 373:19792015. View Article : Google Scholar : PubMed/NCBI | |
Josefsson SE, Beiske K, Blaker YN, Førsund MS, Holte H, Østenstad B, Kimby E, Köksal H, Wälchli S, Bai B, et al: TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-hodgkin lymphoma. Cancer Immunol Res. 7:355–362. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, et al: TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 7:e14667692018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang H, Chen L, Feng Z, Gao L and Li Q: TIGIT expression is upregulated in T cells and causes T cell dysfunction independent of PD-1 and Tim-3 in adult B lineage acute lymphoblastic leukemia. Cell Immunol. 344:1039582019. View Article : Google Scholar : PubMed/NCBI | |
Harjunpaa H and Guillerey C: TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Valsecchi ME: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:12702015. View Article : Google Scholar : PubMed/NCBI |