1
|
Tkach M and Théry C: Communication by
extracellular vesicles: Where we are and where we need to go. Cell.
164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hessvik NP and Llorente A: Current
knowledge on exosome biogenesis and release. Cell Mol Life Sci.
75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Greening DW, Gopal SK, Xu R, Simpson RJ
and Chen W: Exosomes and their roles in immune regulation and
cancer. Semin Cell Dev Biol. 40:72–81. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yankovskaya V, Horsefield R, Törnroth S,
Chavez CL, Miyoshi H, Léger C, Byrne B, Cecchini G and Iwata S:
Architecture of succinate dehydrogenase and reactive oxygen species
generation. Science. 299:700–704. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nùkhet AB, Iman MA, Yueming Z, Larry WO
and Douglas RS: Increased levels of superoxide and hydrogen
peroxide mediate the differential susceptibility of cancer cells
vs. normal cells to glucose deprivation. Biochem J. 418:29–37.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Szatrowski TP and Nathan CF: Production of
large amounts of hydrogen peroxide by human tumor cells. Cancer
Res. 51:794–798. 1991.PubMed/NCBI
|
7
|
Boonstra J and Post JA: Molecular events
associated with reactive oxygen species and cell cycle progression
in mammalian cells. Gene. 337:1–13. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Miao L and St Clair DK: Regulation of
superoxide dismutase genes: Implications in disease. Free Radic
Biol Med. 47:344–356. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Srinivas US, Tan BWQ, Vellayappan BA and
Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox
Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zou Z, Chang H, Li H and Wang S: Induction
of reactive oxygen species: An emerging approach for cancer
therapy. Apoptosis. 22:1321–1335. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mukubou H, Tsujimura T, Sasaki R and Ku Y:
The role of autophagy in the treatment of pancreatic cancer with
gemcitabine and ionizing radiation. Int J Oncol. 37:821–828.
2010.PubMed/NCBI
|
12
|
Doskey CM, Buranasudja V, Wagner BA,
Wilkes JG, Du J, Cullen JJ and Buettner GR: Tumor cells have
decreased ability to metabolize H2O2:
Implications for pharmacological ascorbate in cancer therapy. Redox
Biol. 10:274–284. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shea A, Harish V, Afzal Z, Chijioke J,
Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, et
al: MicroRNAs in glioblastoma multiforme pathogenesis and
therapeutics. Cancer Med. 5:1917–1946. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bracken CP, Scott HS and Goodall GJ: A
network-biology perspective of microRNA function and dysfunction in
cancer. Nat Rev Genet. 17:719–732. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Di Francesco A, De Pittà C, Moret F,
Barbieri V, Celotti L and Mognato M: The DNA-damage response to
γ-radiation is affected by miR-27a in A549 cells. Int J Mol Sci.
14:17881–17896. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang B, Chen J, Ren Z, Chen Y, Li J, Miao
X, Song Y, Zhao T, Li Y, Shi Y, et al: A specific miRNA signature
promotes radioresistance of human cervical cancer cells. Cancer
Cell Int. 13:1182013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shin S, Cha HJ, Lee EM, Lee SJ, Seo SK,
Jin HO, Park IC, Jin YW and An S: Alteration of miRNA profiles by
ionizing radiation in A549 human non-small cell lung cancer cells.
Int J Oncol. 35:81–86. 2009.PubMed/NCBI
|
18
|
Simone BA, Ly D, Savage JE, Hewitt SM, Dan
TD, Ylaya K, Shankavaram U, Lim M, Jin L, Camphausen K, et al:
MicroRNA alterations driving acute and late stages of
radiation-induced fibrosis in a murine skin model. Int J Radiat
Oncol Biol Phys. 90:44–52. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hou J, Wang F, Kong P, Yu PK, Wang H and
Han W: Gene profiling characteristics of radioadaptive response in
AG01522 normal human fibroblasts. PLoS One. 10:e01233162015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Sharma V and Misteli T: Non-coding RNAs in
DNA damage and repair. FEBS Lett. 587:1832–1839. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang C and Peng G: Non-coding RNAs: An
emerging player in DNA damage response. Mutat Res. 763:202–211.
2015. View Article : Google Scholar
|
22
|
Lyng FM, Maguire P, McClean B, Seymour C
and Mothersill C: The involvement of calcium and MAP kinase
signaling pathways in the production of radiation-induced bystander
effects. Radiat Res. 165:400–409. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Iyer R, Lehnert BE and Svensson R: Factors
underlying the cell growth-related bystander responses to alpha
particles. Cancer Res. 60:1290–1298. 2000.PubMed/NCBI
|
24
|
Gow MD, Seymour CB, Ryan LA and Mothersill
CE: Induction of bystander response in human glioma cells using
high-energy electrons: A role for TGF-beta1. Radiat Res.
173:769–778. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Al-Mayah AHJ, Irons SL, Pink RC, Carter
DRF and Kadhim MA: Possible role of exosomes containing RNA in
mediating nontargeted effect of ionizing radiation. Radiat Res.
177:539–545. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
JCRB Cell Bank, . Cell information.
Available from. cellbank.nibiohn.go.jp/~cellbank/cgi-bin/search_res_det.cgi?ID=245
|
27
|
Thery C, Amigorena S, Raposo G and Clayton
A: Isolation and characterization of exosomes from cell culture
supernatants and biological fluids. Curr Protoc Cell Biol Chapter.
3:Unit 3.22. 2006.
|
28
|
Pegtel DM, Cosmopoulos K, Thorley-Lawson
DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD,
Würdinger T and Middeldorp JA: Functional delivery of viral miRNAs
via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Rasband WS: ImageJ, U.S. Available from.
https://imagej.nih.gov/ij/1997-2018
|
30
|
Shimizu Y, Mukumoto N, Idrus N, Akasaka H,
Inubushi S, Yoshida K, Mikawaki D, Ishihara T, Okamoto Y, Yasuda T,
et al: Amelioration of radiation enteropathy by dietary
supplementation with reduced coenzyme Q10. Adv Radiat Oncol.
4:237–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Achanta G, Sasaki R, Feng L, Carew JS, Lu
W, Pelicano H, Keating MJ and Huang P: Novel role of p53 in
maintaining mitochondrial genetic stability through interaction
with DNA Pol gamma. EMBO J. 24:3482–3492. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dutta S, Warshall C, Bandyopadhyay C,
Dutta D and Chandran B: Interactions between exosomes from breast
cancer cells and primary mammary epithelial cells leads to
generation of reactive oxygen species which induce DNA damage
response, stabilization of p53 and autophagy in epithelial cells.
PLoS One. 9:e975802014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sasaki R, Suzuki Y, Yonezawa Y, Ota Y,
Okamoto Y, Demizu Y, Huang P, Yoshida H, Sugimura K and Mizushina
Y: DNA polymerase gamma inhibition by vitamin K3 induces
mitochondria-mediated cytotoxicity in human cancer cells. Cancer
Sci. 99:1040–1048. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nakayama M, Sasaki R, Ogino C, Tanaka T,
Morita K, Umetsu M, Ohara S, Tan Z, Nishimura Y, Akasaka H, et al:
Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray
irradiation against pancreatic cancer model through reactive oxygen
species generation in vitro and in vivo. Radiat Oncol. 11:912016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Bonner WM, Redon CE, Dickey JS, Nakamura
AJ, Sedelnikova OA, Solier S and Pommier Y: GammaH2AX and cancer.
Nat Rev Cancer. 8:957–967. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Inubushi S, Kawaguchi H, Mizumoto S,
Kunihisa T, Baba M, Kitayama Y, Takeuchi T, Hoffman RM, Tanino H
and Sasaki R: Oncogenic miRNAs identified in tear exosomes from
metastatic breast cancer patients. Anticancer Res. 40:3091–3096.
2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
R Core Team (2018), . R: A language and
environment for statical computing. 2018.
|
38
|
Warnes GR, Bolker B, Bonebakker L,
Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A and
Moeller S: gplots: Various R programming tools for plotting data.
2018.
|
39
|
Agarwal V, Bell GW, Nam J and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
ELife. 4:e050052015. View Article : Google Scholar
|
40
|
Hsu SD, Lin FM, Wu WY, Liang C, Huang WC,
Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, et al: miRTarBase: A
database curates experimentally validated microRNA-target
interactions. Nucleic Acids Rese. 39:163–169. 2011. View Article : Google Scholar
|
41
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Gomez ML, Shah N, Kenny CT, Jenkins CE Jr
and Germain D: SOD1 is essential for oncogene-driven mammary tumor
formation but dispensable for normal development and proliferation.
Oncogene. 38:5751–5765. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu S, Li B, Xu J, Hu S, Zhan N, Wang H,
Gao C, Li J and Xu X: SOD1 promotes cell proliferation and
metastasis in non-small cell lung cancer via an
miR-409-3p/SOD1/SETDB1 epigenetic regulatory feedforward loop.
Front Cell Dev Biol. 8:2132020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Papa L, Manfredi G and Germain D: SOD1, an
unexpected novel target for cancer therapy. Genes Cancer. 5:15–21.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Koskenkorva-Frank ST, Weiss G, Koppenol HW
and Burckhardt S: The complex interplay of iron metabolism,
reactive oxygen species, and reactive nitrogen species: Insights
into the potential of various iron therapies to induce oxidative
and nitrosative stress. Free Radic Biol Med. 65:1174–1194. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Gomes SE, Pereira DM, Roma-Rodrigues C,
Fernandes AR, Borralho PM and Rodrigues CM: Convergence of miR-143
overexpression, oxidative stress and cell death in HCT116 human
colon cancer cells. PLoS One. 13:e01916072018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Glasauer A, Sena LA, Diebold LP, Mazar AP
and Chandel NS: Targeting SOD1 reduces experimental non-small-cell
lung cancer. J Clin Invest. 124:117–128. 2013. View Article : Google Scholar
|
49
|
Yang H, Assad N and Held KD:
Medium-mediated intercellular communication is involved in
bystander responses of X-ray-irradiated normal human fibroblasts.
Oncogene. 24:2096–2103. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhou H, Randers-Pehrson G, Waldren CA,
Vannais D, Hall EJ and Hei TH: Induction of a bystander mutagenic
effect of alpha particles in mammalian cells. Proc Natl Acad Sci
USA. 97:2099–2104. 2000. View Article : Google Scholar : PubMed/NCBI
|
51
|
Huo L, Nagasawa H and Little JB: HPRT
mutants induced in bystander cells by very low fluences of alpha
particles result primarily from point mutations. Radiat Res.
156:521–525. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lyng FM, Seymour CB and Mothersill C:
Initiation of apoptosis in cells exposed to medium from the progeny
of irradiated cells: A possible mechanism for bystander-induced
genomic instability? Radiat Res. 157:365–370. 2002. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kovalchuk O, Zemp FJ, Filkowski JN,
Altamirano AM, Dickey JS, Jenkins-Baker G, Marino SA, Brenner DJ,
Bonner WM and Sedelnikova OA: MicroRNAome changes in bystander
three-dimensional human tissue models suggest priming of apoptotic
pathways. Carcinogenesis. 31:1882–1888. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Koturbash I, Zemp F, Kolb B and Kovalchuk
O: Sex-specific radiation-induced microRNAome responses in the
hippocampus, cerebellum and frontal cortex in a mouse model. Mutat
Res. 722:114–118. 2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Maes OC, An J, Sarojini H, Wu HL and Wang
E: Changes in microRNA expression patterns in human fibroblasts
after low-LET radiation. J Cell Biochem. 105:824–834. 2008.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Niemoeller OM, Niyazi M, Corradini S,
Zehentmayr F, Li M, Lauber K and Belka C: MicroRNA expression
profiles in human cancer cells after ionizing radiation. Radiat
Oncol. 6:292011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang X, Ng WL, Wang P, Tian L, Werner E,
Wang H, Doetsch P and Wang Y: MicroRNA-21 modulates the levels of
reactive oxygen species by targeting SOD3 and TNFα. Cancer Res.
72:4707–4713. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Fan PC, Zhang Y, Wang Y, Wei W, Zhou YX,
Xie Y, Wang X, Qi YZ, Chang L, Jia ZP, et al: Quantitative
proteomics reveals mitochondrial respiratory chain as a dominant
target for carbon ion radiation: Delayed reactive oxygen species
generation caused DNA damage. Free Radic Biol Med. 130:436–445.
2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zulato E, Ciccarese F, Agnusdei V, Pinazza
M, Nardo G, Iorio E, Curtarello M, Silic-Benussi M, Rossi E,
Venturoli C, et al: LKB1 loss is associated with glutathione
deficiency under oxidative stress and sensitivity of cancer cells
to cytotoxic drugs and γ-irradiation. Biochem Pharmacol.
156:479–490. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Urbanelli L, Magini A, Buratta S, Brozzi
A, Sagini K and Polchi A: Signaling pathways in exosomes
biogenesis, secretion and fate. Genes. 4:152–170. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Cardiello C, Cavallini L, Spinelli C, Yang
J, Reis-Sobreiro M, de Candia P, Minciacchi VR and Di VD: Focus on
extracellular vesicles: New frontiers of cell-to-cell communication
in cancer. Int J Mol Sci. 17:1752016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Liu LS, Sun P, Li Y, Liu SS and Lu Y:
Exosomes as critical mediators of cell-to-cell communication in
cancer pathogenesis and their potential clinical application.
Transl Cancer Res. 8:298–311. 2019. View Article : Google Scholar
|
63
|
Mutschelknaus L, Peters C, Winkler K,
Yentrapalli R, Heider T, Atkinson MJ and Moertl S: Exosomes derived
from squamous head and neck cancer promote cell survival after
ionizing radiation. PLoS One. 11:e01522132016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Arscott WT, Tandle AT, Zhao S, Shabason
JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ and Camphausen KA:
Ionizing radiation and glioblastoma exosomes: Implications in tumor
biology and cell migration. Transl Oncol. 6:638–648. 2013.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Hazawa M, Tomiyama K, Saotome-Nakamura A,
Obara C, Yasuda T, Gotoh T, Tanaka I, Yakumaru H, Ishihara H and
Tajima K: Radiation increases the cellular uptake of exosomes
through CD29/CD81 complex formation. Biochem Biophys Res Commun.
446:1165–1171. 2014. View Article : Google Scholar : PubMed/NCBI
|
66
|
O'Brien K, Rani S, Corcoran C, Wallace R,
Hughes L, Friel AM, McDonnell S, Crown J, Radomski MW and
O'Driscoll L: Exosomes from triple-negative breast cancer cells can
transfer phenotypic traits representing their cells of origin to
secondary cells. Eur J Cancer. 49:1845–1859. 2013. View Article : Google Scholar : PubMed/NCBI
|
67
|
Costa-Silva B, Aiello NM, Ocean AJ, Singh
S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et
al: Pancreatic cancer exosomes initiate pre-metastatic niche
formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI
|