Direct and indirect anticancer effects of hyperthermic intraperitoneal chemotherapy on peritoneal malignancies (Review)
- Authors:
- Ying Zhang
- Yumin Wu
- Jun Wu
- Chen Wu
-
Affiliations: Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China, Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China - Published online on: February 10, 2021 https://doi.org/10.3892/or.2021.7974
- Article Number: 23
This article is mentioned in:
Abstract
Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI | |
Polyzos A, Tsavaris N, Kosmas C, Giannikos L, Katsikas M, Kalahanis N, Karatzas G, Christodoulou K, Giannakopoulos K, Stamatiadis D and Katsilambros N: A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology. 56:291–296. 1999. View Article : Google Scholar : PubMed/NCBI | |
Arshad U, Ploylearmsaeng SA, Karlsson MO, Doroshyenko O, Langer D, Schömig E, Kunze S, Güner SA, Skripnichenko R, Ullah S, et al: Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients. Cancer Chemother Pharmacol. 85:711–722. 2020. View Article : Google Scholar : PubMed/NCBI | |
Flessner MF: The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 288:F433–F442. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barlin JN, Dao F, Bou Zgheib N, Ferguson SE, Sabbatini PJ, Hensley ML, Bell-McGuinn KM, Konner J, Tew WP, Aghajanian C and Chi DS: Progression-free and overall survival of a modified outpatient regimen of primary intravenous/intraperitoneal paclitaxel and intraperitoneal cisplatin in ovarian, fallopian tube, and primary peritoneal cancer. Gynecol Oncol. 125:621–624. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3:487–497. 2002. View Article : Google Scholar : PubMed/NCBI | |
van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, et al: Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 378:230–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Moreno S: Peritoneal surface oncology: A PROGRESS REPort. Eur J Surg Oncol. 32:593–596. 2006. View Article : Google Scholar : PubMed/NCBI | |
Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, et al: Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 22:256–266. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goéré D, Glehen O, Quenet F, Guilloit JM, Bereder JM, Lorimier G, Thibaudeau E, Ghouti L, Pinto A, Tuech JJ, et al: Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): A randomised, phase 3 study. Lancet Oncol. 21:1147–1154. 2020. View Article : Google Scholar : PubMed/NCBI | |
González-Moreno S, González-Bayón LA and Ortega-Pérez G: Hyperthermic intraperitoneal chemotherapy: Rationale and technique. World J Gastrointest Oncol. 2:68–75. 2010. View Article : Google Scholar : PubMed/NCBI | |
Giovanella BC, Stehlin JS and Morgan AC: Selective lethal effect of supranormal temperatures on human neoplastic cells. Cancer Res. 36:3944–3950. 1976.PubMed/NCBI | |
Glehen O, Cotte E, Kusamura S, Deraco M, Baratti D, Passot G, Beaujard AC and Noel GF: Hyperthermic intraperitoneal chemotherapy: Nomenclature and modalities of perfusion. J Surg Oncol. 98:242–246. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-García S, Padilla-Valverde D, Villarejo-Campos P, Martín-Fernández J, García-Rojo M and Rodríguez-Martínez M: Experimental development of an intra-abdominal chemohyperthermia model using a closed abdomen technique and a PRS-1.0 Combat CO2 recirculation system. Surgery. 155:719–725. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leiting JL, Cloyd JM, Ahmed A, Fournier K, Lee AJ, Dessureault S, Felder S, Veerapong J, Baumgartner JM, Clarke C, et al: Comparison of open and closed hyperthermic intraperitoneal chemotherapy: Results from the United States hyperthermic intraperitoneal chemotherapy collaborative. World J Gastrointest Oncol. 12:756–767. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-García S, Villarejo-Campos P, Padilla-Valverde D, Amo-Salas M and Martín-Fernández J: Intraperitoneal chemotherapy hyperthermia (HIPEC) for peritoneal carcinomatosis of ovarian cancer origin by fluid and CO2 recirculation using the closed abdomen technique (PRS-1.0 Combat): A clinical pilot study. Int J Hyperthermia. 32:488–495. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Förster E, Zieren J and Giger-Pabst U: Exploring the spatial drug distribution pattern of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 23:1220–1224. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nadiradze G, Horvath P, Sautkin Y, Archid R, Weinreich FJ, Königsrainer A and Reymond MA: Overcoming drug resistance by taking advantage of physical principles: Pressurized intraperitoneal aerosol chemotherapy (PIPAC). Cancers (Basel). 12:342019. View Article : Google Scholar | |
Verwaal VJ, van Ruth S, de Bree E, van Sloothen GW, van Tinteren H, Boot H and Zoetmulder FA: Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 21:3737–3743. 2003. View Article : Google Scholar : PubMed/NCBI | |
Klaver CE, Musters GD, Bemelman WA, Punt CJ, Verwaal VJ, Dijkgraaf MG, Aalbers AG, van der Bilt JD, Boerma D, Bremers AJ, et al: Adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with colon cancer at high risk of peritoneal carcinomatosis; the COLOPEC randomized multicentre trial. BMC Cancer. 15:4282015. View Article : Google Scholar : PubMed/NCBI | |
Reutovich MY, Krasko OV and Sukonko OG: Hyperthermic intraperitoneal chemotherapy in serosa-invasive gastric cancer patients. Eur J Surg Oncol. 45:2405–2411. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, Zhou YF, Xiong B, Yonemura Y and Li Y: Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: Final results of a phase III randomized clinical trial. Ann Surg Oncol. 18:1575–1581. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spiliotis J, Halkia E, Lianos E, Kalantzi N, Grivas A, Efstathiou E and Giassas S: Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: A prospective randomized phase III study. Ann Surg Oncol. 22:1570–1575. 2015. View Article : Google Scholar : PubMed/NCBI | |
Glockzin G, Rochon J, Arnold D, Lang SA, Klebl F, Zeman F, Koller M, Schlitt HJ and Piso P: A prospective multicenter phase II study evaluating multimodality treatment of patients with peritoneal carcinomatosis arising from appendiceal and colorectal cancer: The COMBATAC trial. BMC Cancer. 13:672013. View Article : Google Scholar : PubMed/NCBI | |
van Leeuwen BL, Graf W, Pahlman L and Mahteme H: Swedish experience with peritonectomy and HIPEC. HIPEC in peritoneal carcinomatosis. Ann Surg Oncol. 15:745–753. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zivanovic O, Chi DS, Filippova O, Randall LM, Bristow RE and O'Cearbhaill RE: It's time to warm up to hyperthermic intraperitoneal chemotherapy for patients with ovarian cancer. Gynecol Oncol. 151:555–561. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kusamura S, Azmi N, Fumagalli L, Baratti D, Guaglio M, Cavalleri A, Garrone G, Battaglia L, Barretta F and Deraco M: Phase II randomized study on tissue distribution and pharmacokinetics of cisplatin according to different levels of intra-abdominal pressure (IAP) during HIPEC (NCT02949791). Eur J Surg Oncol. 47:82–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cesna V, Sukovas A, Jasukaitiene A, Naginiene R, Barauskas G, Dambrauskas Z, Paskauskas S and Gulbinas A: Narrow line between benefit and harm: Additivity of hyperthermia to cisplatin cytotoxicity in different gastrointestinal cancer cells. World J Gastroenterol. 24:1072–1083. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ceelen W, Braet H, van Ramshorst G, Willaert W and Remaut K: Intraperitoneal chemotherapy for peritoneal metastases: An expert opinion. Expert Opin Drug Deliv. 17:511–522. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Calderwood SK: Autophagy, protein aggregation and hyperthermia: A mini-review. Int J Hyperthermia. 27:409–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ahmed K, Zaidi SF, Mati-Ur-Rehman, Rehman R and Kondo T: Hyperthermia and protein homeostasis: Cytoprotection and cell death. J Therm Biol. 91:1026152020. View Article : Google Scholar : PubMed/NCBI | |
Franke K, Kettering M, Lange K, Kaiser WA and Hilger I: The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels. Int J Nanomedicine. 8:351–363. 2013.PubMed/NCBI | |
Luchetti F, Mannello F, Canonico B, Battistelli M, Burattini S and Falcieri E: Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis. Apoptosis. 9:635–648. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luchetti F, Canonico B, Della Felice M, Burattini S, Battistelli M, Papa S and Falcieri E: Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol. 18:1041–1052. 2003.PubMed/NCBI | |
Onishi Y, Fehervari Z, Yamaguchi T and Sakaguchi S: Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 105:10113–10118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Berríos MP, Castillo A, Mendéz J, Soto O, Rinaldi C and Torres-Lugo M: Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int J Nanomedicine. 8:1003–1013. 2013.PubMed/NCBI | |
Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, et al: Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia. 29:491–499. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Andrade Mello P, Bian S, Savio LEB, Zhang H, Zhang J, Junger W, Wink MR, Lenz G, Buffon A, Wu Y and Robson SC: Hyperthermia and associated changes in membrane fluidity potentiate P2X7 activation to promote tumor cell death. Oncotarget. 8:67254–67268. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Oorschot B, Granata G, Di Franco S, Ten Cate R, Rodermond HM, Todaro M, Medema JP and Franken NA: Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget. 7:65504–65513. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mehta IS, Kulashreshtha M, Chakraborty S, Kolthur-Seetharam U and Rao BJ: Chromosome territories reposition during DNA damage-repair response. Genome Biol. 14:1352013. View Article : Google Scholar : PubMed/NCBI | |
Warters RL and Henle KJ: DNA degradation in chinese hamster ovary cells after exposure to hyperthermia. Cancer Res. 42:4427–4432. 1982.PubMed/NCBI | |
Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K, et al: Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res. 64:8839–8845. 2004. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, Mori E, Somakos GI, Ohnishi K and Ohnishi T: Heat induces gammaH2AX foci formation in mammalian cells. Mutat Res. 656:88–92. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, et al: Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 67:3010–3017. 2007. View Article : Google Scholar : PubMed/NCBI | |
El-Awady RA, Dikomey E and Dahm-Daphi J: Heat effects on DNA repair after ionising radiation: Hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements. Nucleic Acids Res. 29:1960–1966. 2001. View Article : Google Scholar : PubMed/NCBI | |
Muenyi CS, States VA, Masters JH, Fan TW, Helm CW and States JC: Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraperitoneal chemotherapy (HIPEC). J Ovarian Res. 4:92011. View Article : Google Scholar : PubMed/NCBI | |
Oei AL, Vriend LE, Crezee J, Franken NA and Krawczyk PM: Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat Oncol. 10:1652015. View Article : Google Scholar : PubMed/NCBI | |
Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, et al: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA. 108:9851–9856. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, Wei D, Zhang L, Rong G and Weng Y: Near-infrared light irradiation induced Mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy. ACS Nano. 14:14831–14845. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ohno S, Siddik ZH, Kido Y, Zwelling LA and Bull JM: Thermal enhancement of drug uptake and DNA adducts as a possible mechanism for the effect of sequencing hyperthermia on cisplatin-induced cytotoxicity in L1210 cells. Cancer Chemother Pharmacol. 34:302–306. 1994. View Article : Google Scholar : PubMed/NCBI | |
Sato I, Umemura M, Mitsudo K, Kioi M, Nakashima H, Iwai T, Feng X, Oda K, Miyajima A, Makino A, et al: Hyperthermia generated with ferucarbotran (Resovist®) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells. J Physiol Sci. 64:177–183. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clavel CM, Nowak-Sliwinska P, Păunescu E, Griffioen AW and Dyson PJ: In vivo evaluation of small-molecule thermoresponsive anticancer drugs potentiated by hyperthermia. Chem Sci. 6:2795–2801. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peer AJ, Grimm MJ, Zynda ER and Repasky EA: Diverse immune mechanisms may contribute to the survival benefit seen in cancer patients receiving hyperthermia. Immunol Res. 46:137–154. 2010. View Article : Google Scholar : PubMed/NCBI | |
Borst J, Ahrends T, Bąbała N, Melief CJM and Kastenmüller W: CD4+T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schuijs MJ, Hammad H and Lambrecht BN: Professional and ‘Amateur’ Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol. 40:22–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Evans SS, Repasky EA and Fisher DT: Fever and the thermal regulation of immunity: The immune system feels the heat. Nat Rev Immunol. 15:335–349. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E and Repasky EA: Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 82:1322–1331. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liu F, Peng Y, Sun L and Chen G: Changes in expression of four molecular marker proteins and one microRNA in mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis patients. Exp Ther Med. 6:1189–1193. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rynne-Vidal A, Au-Yeung CL, Jiménez-Heffernan JA, Pérez-Lozano ML, Cremades-Jimeno L, Bárcena C, Cristóbal-García I, Fernández-Chacón C, Yeung TL, Mok SC, et al: Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol. 242:140–151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pathria P, Louis TL and Varner JA: Targeting Tumor-associated macrophages in cancer. Trends Immunol. 40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu R, Su X, Pan Y, Han X, Shao C and Shi Y: Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 18:1772019. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qu D, Qin Y, Liu Y, Liu T, Liu C, Han T, Chen Y, Ma C and Li X: Fever-inducible lipid nanocomposite for boosting cancer therapy through synergistic engineering of a tumor microenvironment. ACS Appl Mater Interfaces. 12:32301–32311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Frey B, Weiss EM, Rubner Y, Wunderlich R, Ott OJ, Sauer R, Fietkau R and Gaipl US: Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 28:528–542. 2012. View Article : Google Scholar : PubMed/NCBI | |
Agarwal SS, Katz EJ and Loeb LA: Effect of hyperthermia on the survival of normal human peripheral blood mononuclear cells. Cancer Res. 43:3124–3126. 1983.PubMed/NCBI | |
Harden LM, Kent S, Pittman QJ and Roth J: Fever and sickness behavior: Friend or foe? Brain Behav Immun. 50:322–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang Y, Xue Y, Wu Y, Wang Q, Xue L, Su Z and Zhang C: Transforming weakness into strength: Photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv Mater. 31:e18059362019.PubMed/NCBI | |
Mantovani A, Barajon I and Garlanda C: IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 281:57–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N and Taketomi A: Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 108:1947–1952. 2017. View Article : Google Scholar : PubMed/NCBI | |
Korn T, Bettelli E, Oukka M and Kuchroo VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Appenheimer MM, Chen Q, Girard RA, Wang WC and Evans SS: Impact of fever-range thermal stress on lymphocyte-endothelial adhesion and lymphocyte trafficking. Immunol Invest. 34:295–323. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chonov DC, Ignatova MMK, Ananiev JR and Gulubova MV: IL-6 Activities in the Tumour Microenvironment. Part 1. Open Access Maced J Med Sci. 7:2391–2398. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wagner AC, Weber H, Jonas L, Nizze H, Strowski M, Fiedler F, Printz H, Steffen H and Göke B: Hyperthermia induces heat shock protein expression and protection against cerulein-induced pancreatitis in rats. Gastroenterology. 111:1333–1342. 1996. View Article : Google Scholar : PubMed/NCBI | |
Burd R, Dziedzic TS, Xu Y, Caligiuri MA, Subjeck JR and Repasky EA: Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol. 177:137–147. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hartl FU and Hayer-Hartl M: Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 295:1852–1858. 2002. View Article : Google Scholar : PubMed/NCBI | |
Calderwood SK and Gong J: Heat shock proteins promote cancer: It's a protection racket. Trends Biochem Sci. 41:311–323. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pelz JO, Vetterlein M, Grimmig T, Kerscher AG, Moll E, Lazariotou M, Matthes N, Faber M, Germer CT, Waaga-Gasser AM and Gasser M: Hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis: Role of heat shock proteins and dissecting effects of hyperthermia. Ann Surg Oncol. 20:1105–1113. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kepenekian V, Aloy MT, Magné N, Passot G, Armandy E, Decullier E, Sayag-Beaujard A, Gilly FN, Glehen O and Rodriguez-Lafrasse C: Impact of hyperthermic intraperitoneal chemotherapy on Hsp27 protein expression in serum of patients with peritoneal carcinomatosis. Cell Stress Chaperones. 18:623–630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mu C, Wu X, Zhou X, Wolfram J, Shen J, Zhang D, Mai J, Xia X, Holder AM, Ferrari M, et al: Chemotherapy sensitizes therapy-resistant cells to Mild hyperthermia by suppressing heat shock protein 27 expression in triple-negative breast cancer. Clin Cancer Res. 24:4900–4912. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zunino B, Rubio-Patiño C, Villa E, Meynet O, Proics E, Cornille A, Pommier S, Mondragón L, Chiche J, Bereder JM, et al: Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene. 35:261–268. 2016. View Article : Google Scholar : PubMed/NCBI | |
Isambert N, Delord JP, Soria JC, Hollebecque A, Gomez-Roca C, Purcea D, Rouits E, Belli R and Fumoleau P: Debio0932, a second-generation oral heat shock protein (HSP) inhibitor, in patients with advanced cancer-results of a first-in-man dose-escalation study with a fixed-dose extension phase. Ann Oncol. 26:1005–1011. 2015. View Article : Google Scholar : PubMed/NCBI | |
Larson N, Gormley A, Frazier N and Ghandehari H: Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia. J Control Release. 170:41–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taha EA, Ono K and Eguchi T: Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion. Int J Mol Sci. 20:45882019. View Article : Google Scholar | |
Mukhopadhaya A, Mendecki J, Dong X, Liu L, Kalnicki S, Garg M, Alfieri A and Guha C: Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res. 67:7798–7806. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang HG, Mehta K, Cohen P and Guha C: Hyperthermia on immune regulation: A temperature's story. Cancer Lett. 271:191–204. 2008. View Article : Google Scholar : PubMed/NCBI | |
Torigoe T, Tamura Y and Sato N: Heat shock proteins and immunity: Application of hyperthermia for immunomodulation. Int J Hyperthermia. 25:610–616. 2009. View Article : Google Scholar : PubMed/NCBI | |
Calderwood SK, Theriault JR and Gong J: How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia. 21:713–716. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H and Youn B: Immunogenic effect of hyperthermia on enhancing radiotherapeutic efficacy. Int J Mol Sci. 19:27952018. View Article : Google Scholar | |
van Baal JO, Van de Vijver KK, Nieuwland R, van Noorden CJ, van Driel WJ, Sturk A, Kenter GG, Rikkert LG and Lok CA: The histophysiology and pathophysiology of the peritoneum. Tissue Cell. 49:95–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kastelein AW, Vos LMC, de Jong KH, van Baal JOAM, Nieuwland R, van Noorden CJF, Roovers JWR and Lok CAR: Embryology, anatomy, physiology and pathophysiology of the peritoneum and the peritoneal vasculature. Semin Cell Dev Biol. 92:27–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Bree E, Michelakis D, Stamatiou D, Romanos J and Zoras O: Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum. 2:47–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ceelen WP and Flessner MF: Intraperitoneal therapy for peritoneal tumors: Biophysics and clinical evidence. Nat Rev Clin Oncol. 7:108–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
van Ruth S, Mathôt RA, Sparidans RW, Beijnen JH, Verwaal VJ and Zoetmulder FA: Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy. Clinical Pharmacokinet. 43:131–143. 2004. View Article : Google Scholar | |
Cashin PH, Ehrsson H, Wallin I, Nygren P and Mahteme H: Pharmacokinetics of cisplatin during hyperthermic intraperitoneal treatment of peritoneal carcinomatosis. Eur J Clin Pharmacol. 69:533–540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leinwand JC, Bates GE, Allendorf JD, Chabot JA, Lewin SN and Taub RN: Body surface area predicts plasma oxaliplatin and pharmacokinetic advantage in hyperthermic intraoperative intraperitoneal chemotherapy. Ann Surg Oncol. 20:1101–1104. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Bree E, Rosing H, Filis D, Romanos J, Melisssourgaki M, Daskalakis M, Pilatou M, Sanidas E, Taflampas P, Kalbakis K, et al: Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: A clinical and pharmacokinetic study. Ann Surg Oncol. 15:1183–1192. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Bree E, Rosing H, Beijnen JH, Romanos J, Michalakis J, Georgoulias V and Tsiftsis DD: Pharmacokinetic study of docetaxel in intraoperative hyperthermic i.p. chemotherapy for ovarian cancer. Anticancer Drugs. 14:103–110. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nicoletto MO, Padrini R, Galeotti F, Ferrazzi E, Cartei G, Riddi F, Palumbo M, De Paoli M and Corsini A: Pharmacokinetics of intraperitoneal hyperthermic perfusion with mitoxantrone in ovarian cancer. Cancer Chemother Pharmacol. 45:457–462. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rossi CR, Mocellin S, Pilati P, Foletto M, Quintieri L, Palatini P and Lise M: Pharmacokinetics of intraperitoneal cisplatin and doxorubicin. Surg Oncol Clin N Am. 12:781–794. 2003. View Article : Google Scholar : PubMed/NCBI | |
Choi YH: Interpretation of drug interaction using systemic and local tissue exposure changes. Pharmaceutics. 12:4172020. View Article : Google Scholar | |
Tentes AA, Kyziridis D, Kakolyris S, Pallas N, Zorbas G, Korakianitis O, Mavroudis C, Courcoutsakis N and Prasopoulos P: Preliminary results of hyperthermic intraperitoneal intraoperative chemotherapy as an adjuvant in resectable pancreatic cancer. Gastroenterol Res Pract. 2012:5065712012. View Article : Google Scholar : PubMed/NCBI | |
Lemoine L, Thijssen E, Carleer R, Cops J, Lemmens V, Eyken PV, Sugarbaker P and der Speeten KV: Body surface area-based versus concentration-based intraperitoneal perioperative chemotherapy in a rat model of colorectal peritoneal surface malignancy: Pharmacologic guidance towards standardization. Oncotarget. 10:1407–1424. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lemoine L, Thijssen E, Carleer R, Geboers K, Sugarbaker P and van der Speeten K: Body surface area-based vs concentration-based perioperative intraperitoneal chemotherapy after optimal cytoreductive surgery in colorectal peritoneal surface malignancy treatment: COBOX trial. J Surg Oncol. 119:999–1010. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liesenfeld LF, Hillebrecht HC, Klose J, Schmidt T and Schneider M: Impact of perfusate concentration on hyperthermic intraperitoneal chemotherapy efficacy and toxicity in a rodent model. J Surg Res. 253:262–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shah DK, Shin BS, Veith J, Tóth K, Bernacki RJ and Balthasar JP: Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy. J Pharmacol Exp Ther. 329:580–591. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gremonprez F, Descamps B, Izmer A, Vanhove C, Vanhaecke F, De Wever O and Ceelen W: Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget. 6:29889–29900. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li H, Mao X, Liu K, Sun J, Li B, Malyar RM, Liu D, Pan C, Gan F and Liu Y: A pilot study of combination intraperitoneal recombinant human endostatin and chemotherapy for refractory malignant ascites secondary to ovarian cancer. Med Oncol. 31:9302014. View Article : Google Scholar : PubMed/NCBI | |
Cristea MC, Frankel P, Synold T, Rivkin S, Lim D, Chung V, Chao J, Wakabayashi M, Paz B, Han E, et al: A phase I trial of intraperitoneal nab-paclitaxel in the treatment of advanced malignancies primarily confined to the peritoneal cavity. Cancer Chemother Pharmaco. 83:589–598. 2019. View Article : Google Scholar | |
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M and Sanati-Nezhad A: Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv. 25:846–861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sugarbaker PH and Van der Speeten K: Surgical technology and pharmacology of hyperthermic perioperative chemotherapy. J Gastrointest Oncol. 7:29–44. 2016.PubMed/NCBI | |
Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC and Remaut K: Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis-Mission possible? Adv Drug Deliv Rev. 108:13–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunological effects of conventional chemotherapy and targeted anticancer Agents. Cancer Cell. 28:690–714. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coffelt SB and de Visser KE: Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol. 36:198–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2:261–268. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pfistershammer K, Klauser C, Pickl WF, Stöckl J, Leitner J, Zlabinger G, Majdic O and Steinberger P: No evidence for dualism in function and receptors: PD-L2/B7-DC is an inhibitory regulator of human T cell activation. Eur J Immunol. 36:1104–1113. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT, Belardelli F, et al: Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71:768–778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu J and Waxman DJ: Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8 T-cell responses and immune memory. Oncoimmunology. 4:e10055212015. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Chen Z, Chen D, Zhang B, Wang Z and Le H: Suppressive effects of gemcitabine plus cisplatin chemotherapy on regulatory T cells in nonsmall-cell lung cancer. J Int Med Res. 43:180–187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zitvogel L, Galluzzi L, Smyth MJ and Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity. 39:74–88. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al: Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 3:e9556912014. View Article : Google Scholar : PubMed/NCBI | |
Garg AD and Agostinis P: Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev. 280:126–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 12:860–875. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B and Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol. 18:767–811. 2000. View Article : Google Scholar : PubMed/NCBI | |
Buqué A and Galluzzi L: Modeling tumor immunology and immunotherapy in Mice. Trends Cancer. 4:599–601. 2018. View Article : Google Scholar : PubMed/NCBI | |
Curiel TJ: Immunotherapy: A useful strategy to help combat multidrug resistance. Drug Resist Updat. 15:106–113. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Sun L and Chen ZJ: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 17:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li A, Yi M, Qin S, Song Y, Chu Q and Wu K: Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 12:352019. View Article : Google Scholar : PubMed/NCBI | |
Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U and Tough DF: Cutting edge: Enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol. 176:2074–2078. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fuertes MB, Woo SR, Burnett B, Fu YX and Gajewski TF: Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhagwandin SB, Naffouje S and Salti G: Delayed presentation of major complications in patients undergoing cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy following hospital discharge. J Surg Oncol. 111:324–327. 2015. View Article : Google Scholar : PubMed/NCBI | |
Blaj S, Nedelcut S, Mayr M, Leebmann H, Leucuta D, Glockzin G and Piso P: Re-operations for early postoperative complications after CRS and HIPEC: Indication, timing, procedure, and outcome. Langenbecks Arch Surg. 404:541–546. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dreznik Y, Hoffman A, Hamburger T, Ben-Yaacov A, Dux Y, Jacoby H, Berger Y, Nissan A and Gutman M: Hospital readmission rates and risk factors for readmission following cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal surface malignancies. Surgeon. 16:278–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Panebianco C, Andriulli A and Pazienza V: Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 6:922018. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA and Kroemer G: The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 15:382–396. 2018. View Article : Google Scholar : PubMed/NCBI |