1
|
Haddad N, Tedoro AJ and Soares NP:
Carotenoids inhibits cell proliferation, arrest cell cycle and
induces apoptosis in pituitary tumor cells. 13th European Congress
of Endocrinology. BioScientifica; 2011
|
2
|
Hui L, Shengwu C and Mingwei Z: Surgical
treatment of pituitary adenoma: Analysis of 508 cases at a single
institution. Chin J Oncol Surg. 5:42013.
|
3
|
Sheary CB: Possible influence of
orthodontics on pituitary gland function and learning ability. J
Clin Orthod. 19:889–890. 1985.PubMed/NCBI
|
4
|
Bürgi U and Seiler R: Hypophyseal
dysfunction and tumors. Ther Umsche. 49:136–141. 1992.(In
German).
|
5
|
Rao G and Apfelbaum RI: Symptomatic
pneumocephalus occurring years after transphenoidal surgery and
radiation therapy for an invasive pituitary tumor: A case report
and review of the literature. Pituitary. 6:49–52. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bolognani F, Albariño CG, Romanowski V,
Carri NG and Goya RG: In vitro and in vivo herpetic vector-mediated
gene transfer in the pituitary gland: Impact on hormone secretion.
Eur J Endocrinol. 145:497–503. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Santoro A, Minniti G, Ruggeri A, Esposito
V, Jaffrain-Rea ML and Delfini R: Biochemical remission and
recurrence rate of secreting pituitary adenomas after
transsphenoidal adenomectomy: Long-term endocrinologic follow-up
results. Surg Neurol. 68:513–518. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhong A, Pu J, Ruan L, Jin J, Tan S, Wang
F, Mou J and Yang G: The complications of endoscopic
transsphenoidal surgery for pituitary neoplasms. Int J Clin Exp
Med. 9:20026–20031. 2016.
|
9
|
Prensner JR and Chinnaiyan AM: The
emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Iyer MK, Niknafs YS, Malik R, Singhal U,
Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et
al: The landscape of long noncoding RNAs in the human
transcriptome. Nat Genet. 47:1992015. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou K, Li S, Du G, Fan Y, Wu P, Sun H and
Zhang T: LncRNA XIST depletion prevents cancer progression in
invasive pituitary neuroendocrine tumor by inhibiting bFGF via
upregulation of microRNA-424-5p. Onco Targets Ther. 12:7095–7109.
2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang Y, Liu YT, Tang H, Xie WQ, Yao H, Gu
WT, Zheng YZ, Shang HB, Wang Y, Wei YX, et al: Exosome-transmitted
lncRNA H19 inhibits the growth of pituitary adenoma. J Clin
Endocrinol Metab. 104:6345–6356. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
D'Angelo D, Mussnich P, Sepe R, Raia M,
Del Vecchio L, Cappabianca P, Pellecchia S, Petrosino S, Saggio S,
Solari D, et al: RPSAP52 lncRNA is overexpressed in pituitary
tumors and promotes cell proliferation by acting as miRNA sponge
for HMGA proteins. J Mol Med (Berl). 97:1019–1032. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang C, Tan C, Wen Y, Zhang D, Li G, Chang
L, Su J and Wang X: FOXP1-induced lncRNA CLRN1-AS1 acts as a tumor
suppressor in pituitary prolactinoma by repressing the autophagy
via inactivating Wnt/β-catenin signaling pathway. Cell Death Dis.
10:4992019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu H, Jing G, Shen Y, Dong W, Gao H, Miao
Y, Li C and Zhang Y: Functions and mechanisms of tumor necrosis
factor-α and noncoding RNAs in bone-invasive pituitary adenomas.
Clin Cancer Res. 24:5757–5766. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yue X, Dong C, Ye Z, Zhu L, Zhang X, Eang
X, Mo F, Li Z and Pan B: LncRNA SNHG7 sponges miR-449a to promote
pituitary adenomas progression. Metab Brain Dis. 36:123–132. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Modali SD, Parekh VI, Kebebew E and
Agarwal SK: Epigenetic regulation of the lncRNA MEG3 and its target
c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol.
29:224–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu LX, Deng W, Zhou XT, Chen RP, Xiang
MQ, Guo YT, Pu ZJ, Li R, Wang GF and Wu LF: The mechanism of
adenosine- mediated activation of lncRNA MEG3 and its antitumor
effects in human hepatoma cells. Int J Oncol. 48:421–429. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Modali SD, Desai SS, Parekh VI, Kebebew E,
Emmert-Buck M and Agarwal SK: Abstract LB-249: Reduced expression
of the long non-coding RNA MEG3 in sporadic and MEN1-associated
tumors. Cancer Res. 79 (Suppl 8):LB–249. 2013.
|
20
|
Fan FY, Deng R, Yi H, Sun HP, Zeng Y, He
GC and Su Y: The inhibitory effect of MEG3/miR-214/AIFM2 axis on
the growth of T-cell lymphoblastic lymphoma. Int J Oncol.
51:316–326. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mezzomo LC, Gonzales PH, Pesce FG,
Kretzmann Filho N, Ferreira NP, Oliveira MC and Kohek MB:
Expression of cell growth negative regulators MEG3 and GADD45γ is
lost in most sporadic human pituitary adenomas. Pituitary.
15:420–427. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Method. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Zhang J, Yao T, Lin Z and Gao Y: Aberrant
methylation of MEG3 functions as a potential plasma-based biomarker
for cervical cancer. Sci Rep. 7:62712017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kouhara H, Tatekawa T, Koga M, Hiraga S,
Arita N, Mori H and Sato B: Intracranial and intraspinal
dissemination of an ACTH-secreting pituitary tumor. Endocrinol Jpn.
39:177–184. 1992. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shimon I and Melmed S: Pituitary tumor
pathogenesis. J Clin Endocrinol Metab. 82:1675–1681. 1997.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian ZZ, Guo XJ, Zhao YM and Fang Y:
Decreased expression of long non-coding RNA MEG3 acts as a
potential predictor biomarker in progression and poor prognosis of
osteosarcoma. Int J Clin Exp Pathol. 8:15138–15142. 2015.PubMed/NCBI
|
27
|
Hu D, Su C, Jiang M, Shen Y, Shi A, Zhao
F, Chen R, Shen Z, Bao J and Tang W: Fenofibrate inhibited
pancreatic cancer cells proliferation via activation of p53
mediated by upregulation of LncRNA MEG3. Biochem Biophys Res
Commun. 471:290–295. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim Y, Noren Hooten N and Evans MK: CRP
stimulates GDF15 expression in endothelial cells through p53.
Mediators Inflamm. 2018:82780392018. View Article : Google Scholar : PubMed/NCBI
|
29
|
House JS, Hall J, Park SS, Planchart A,
Money E, Maguire RL, Huang Z, Mattingly CJ, Skaar D, Tzeng JY, et
al: Cadmium exposure and MEG3 methylation differences between
Whites and African Americans in the NEST cohort. Environ Epigenet.
5:dvz0142019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gejman R, Batista DL, Zhong Y, Zhou Y,
Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET and Klibanski
A: Selective loss of MEG3 expression and intergenic differentially
methylated region hypermethylation in the MEG3/DLK1 locus in human
clinically nonfunctioning pituitary adenomas. J Clin Endocrinol
Metab. 93:4119–4125. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheunsuchon P, Zhou Y, Zhang X, Lee H,
Chen W, Nakayama Y, Rice KA, Tessa Hedley-Whyte E, Swearingen B and
Klibanski A: Silencing of the imprinted DLK1-MEG3 locus in human
clinically nonfunctioning pituitary adenomas. Am J Pathol.
179:2120–2130. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Su W, Xie W, Shang Q and Su B: The long
noncoding RNA MEG3 is downregulated and inversely associated with
VEGF levels in osteoarthritis. Biomed Res Int. 2015:3568932015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zaman MS, Thamminana S, Shahryari V,
Chiyomaru T, Deng G, Saini S, Majid S, Fukuhara S, Chang I, Arora
S, et al: Inhibition of PTEN gene expression by oncogenic
miR-23b-3p in renal cancer. PLoS One. 7:e502032012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou K, Zhang T, Fan Y, Du G, Wu P and
Geng D: MicroRNA-106b promotes pituitary tumor cell proliferation
and invasion through PI3K/AKT signaling pathway by targeting PTEN.
Tumour Biol. 37:13469–13477. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li B, Sun M, Gao F, Liu W, Yang Y, Liu H,
Cheng Y, Liu C and Cai J: Up-regulated expression of miR-23a/b
targeted the pro-apoptotic Fas in radiation-induced thymic
lymphoma. Cell Physiol Biochem. 32:1729–1740. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang P, Zhang J, Zhang L, Zhu Z, Fan J,
Chen L, Zhuang L, Luo J, Chen H, Liu L, et al: MicroRNA 23b
regulates autophagy associated with radioresistance of pancreatic
cancer cells. Gastroenterology. 145:1133–1143.e12. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Folmer F, Orlikova B, Schnekenburger M,
Dicato M and Diederich M: Naturally occurring regulators of histone
acetylation/deacetylation. Curr Nutr Food Sci. 6:78–99. 2010.
View Article : Google Scholar
|
38
|
Chuang PY, Dai Y, Liu R, He H, Kretzler M,
Jim B, Cohen CD and He JC: Alteration of forkhead box O (foxo4)
acetylation mediates apoptosis of podocytes in diabetes mellitus.
PLoS One. 6:e235662011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lam EF, Francis R and Petkovic M: FOXO
transcription factors: Key regulators of cell fate. Biochem Soc
Trans. 34:722–726. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Urbich C, Knau A, Fichtlscherer S, Walter
DH, Brühl T, Potente M, Hofmann WK, de Vos S, Zeiher AM and
Dimmeler S: FOXO-dependent expression of the proapoptotic protein
Bim: Pivotal role for apoptosis signaling in endothelial progenitor
cells. FASEB J. 19:974–976. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brenkman AB, van den Broek NJ, de Keizer
PL, van Gent DC and Burgering BM: The DNA damage repair protein
Ku70 interacts with FOXO4 to coordinate a conserved cellular stress
response. FASEB J. 24:4271–4280. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng
GQ, Wan XX, He QY, Li JH, Qu JQ, et al: Activation of EGFR promotes
squamous carcinoma SCC10A cell migration and invasion via inducing
EMT-like phenotype change and MMP-9-mediated degradation of
E-cadherin. J Cell Biochem. 112:2508–2517. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Klymkowsky MW and Savagner P:
Epithelial-mesenchymal transition: A cancer researcher's conceptual
friend and foe. Am J Pathol. 174:1588–1593. 2009. View Article : Google Scholar : PubMed/NCBI
|