Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells
- Authors:
- Gisella Pérez
- Fernanda López‑Moncada
- Sebastián Indo
- María José Torres
- Enrique A. Castellón
- Héctor R. Contreras
-
Affiliations: Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile - Published online on: March 10, 2021 https://doi.org/10.3892/or.2021.8009
- Article Number: 58
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fakhrejahani F, Madan RA and Dahut WL: Management options for biochemically recurrent prostate cancer. Curr Treat Options Oncol. 18:262017. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Ruan H, Xu T, Liu L, Liu D, Yang H, Zhang X and Chen K: Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer. Onco Targets Ther. 11:3167–3178. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 71:618–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 71:630–642. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekar T, Yang J, Gao A and Evans CP: Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 4:365–380. 2015.PubMed/NCBI | |
Yun EJ, Lo UG and Hsieh JT: The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian J Urol. 3:203–210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li Q, Liu X, Liu C, Liu R, Rycaj K, Zhang D, Liu B, Jeter C, Calhoun-Davis T, et al: Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer. Clin Cancer Res. 22:4505–4516. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng Q and Tang DG: Androgen receptor and prostate cancer stem cells: Biological mechanisms and clinical implications. Endocr Relat Cancer. 22:T209–T220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, et al: Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget. 7:193–208. 2015. View Article : Google Scholar | |
Ojo D, Lin X, Wong N, Gu Y and Tang D: Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel). 7:2290–2308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peitzsch C, Tyutyunnykova A, Pantel K and Dubrovska A: Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsao T, Beretov J, Ni J, Bai X, Bucci J, Graham P and Li Y: Cancer stem cells in prostate cancer radioresistance. Cancer Lett. 465:94–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Contreras HR, López-Moncada F and Castellón EA: Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin-releasing hormone receptors. Int J Oncol. 56:1075–1082. 2020.PubMed/NCBI | |
Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, Gallegos I, Mercado A and Huidobro C: Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res. 45:294–305. 2012. View Article : Google Scholar | |
Castillo V, Valenzuela R, Huidobro C, Contreras HR and Castellon EA: Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol. 45:985–994. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI | |
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H and Skvortsova II: Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 53:156–167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mitra A, Mishra L and Li S: EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 6:10699–10710. 2015. View Article : Google Scholar | |
Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U and Castelo-Branco P: Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol Int. 99:125–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Packer JR and Maitland NJ: The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta. 1863:1238–1260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, et al: Androgen deprivation causes epithelial-mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Res. 72:527–36. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuşoğlu A and Biray Avcı Ç: Cancer stem cells: A brief review of the current status. Gene. 681:80–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Adamowicz J, Pakravan K, Bakhshinejad B, Drewa T and Babashah S: Prostate cancer stem cells: From theory to practice. Scand J Urol. 51:95–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY and Deng LL: Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol. 43:113–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eun K, Ham SW and Kim H: Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50:117–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA, Huang RYYJ, Jackson RAA and Thiery JPP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Tian XJ and Xing J: Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J Clin Med. 5:412016. View Article : Google Scholar | |
Sánchez-Tilló E, Liu Y, De Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Goossens S, Vandamme N, Van Vlierberghe P and Berx G: EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 1868:584–591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Sun Y and Ma L: ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lazarova D and Bordonaro M: ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J Cancer. 8:1453–1459. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, Yuan J, Wang M, Chen D, Sun Y, et al: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 16:864–875. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Ma J, Deng G, Qu Y, Yin L, Li Y, Han Y, Cai C, Shen H and Zeng S: ZEB1 promotes oxaliplatin resistance through the induction of epithelial-mesenchymal transition in colon cancer cells. J Cancer. 8:3555–3566. 2017. View Article : Google Scholar : PubMed/NCBI | |
Orellana-serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J Androl. 21:460–467. 2019. View Article : Google Scholar : PubMed/NCBI | |
Orellana-Serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J Androl. 20:294–299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farfán N, Ocarez N, Castellón EA, Mejía N, de Herreros AG and Contreras HR: The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci Rep. 8:114672018. View Article : Google Scholar : PubMed/NCBI | |
Stone KR, Mickey DD, Wunderli H, Mickey GH and Paulson DF: Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 21:274–281. 1978. View Article : Google Scholar : PubMed/NCBI | |
Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA and Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818. 1983.PubMed/NCBI | |
Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV and Dmitriev AA: Pan-cancer analysis of TCGA data revealed promising reference genes for qPCR normalization. Front Genet. 10:972019. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Barrandon Y and Green H: Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 84:2302–2306. 1987. View Article : Google Scholar : PubMed/NCBI | |
Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner BC and Oktem G: Enhanced G2/M arrest, caspase related apoptosis and reduced E-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PLoS One. 10:e01410902015. View Article : Google Scholar : PubMed/NCBI | |
Wang S: Anchorage-independent growth of prostate cancer stem cells. Methods Mol Biol. 568:151–160. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sobel RE and Sadar MD: Cell lines used in prostate cancer research: A compendium of old and new lines-Part 1. J Urol. 173:342–359. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Pestellc TG, Lisantic MP and Pestell RG: Cancer Stem Cells. Int J Biochem Cell Biol. 44:2144–2151. 2012. View Article : Google Scholar : PubMed/NCBI | |
Johnston MD, Maini PK, Jonathan Chapman S, Edwards CM and Bodmer WF: On the proportion of cancer stem cells in a tumour. J Theor Biol. 266:708–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA, Song S, Hochster HS and Steinberg IB: Cancer stem cells: The promise and the potential. Semin Oncol. 42 (Suppl 1):S3–S17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jolly MK and Celià-Terrassa T: Dynamics of phenotypic heterogeneity during EMT and stemness in cancer progression. J Clin Med. 8:15422019. View Article : Google Scholar | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hanrahan K, O'Neill A, Prencipe M, Bugler J, Murphy L, Fabre A, Puhr M, Culig Z, Murphy K and Watson RW: The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Oncol. 11:251–265. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, et al: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 19:518–529. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S and Cui W: Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 6:305–311. 2014. View Article : Google Scholar : PubMed/NCBI | |
Adachi K, Suemori H, Yasuda SY, Nakatsuji N and Kawase E: Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 15:455–470. 2010.PubMed/NCBI | |
Ghaleb AM and Yang VW: Krüppel-like factor 4 (KLF4): What we currently know. Gene. 611:27–137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Andrianakos R, Yang Y, Liu C and Lu W: Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem. 285:9180–9189. 2010. View Article : Google Scholar : PubMed/NCBI | |
An Z, Liu P, Zheng J, Si C, Li T, Chen Y, Ma T, Zhang MQ, Zhou Q and Ding S: Sox2 and Klf4 as the functional core in pluripotency induction without exogenous Oct4. Cell Rep. 29:1986–2000,e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mamun MA, Mannoor K, Cao J, Qadri F and Song X: SOX2 in cancer stemness: Tumor malignancy and therapeutic potentials. J Mol Cell Biol. 12:85–98. 2020. View Article : Google Scholar : PubMed/NCBI | |
Russo MV, Esposito S, Tupone MG, Manzoli L, Airoldi I, Pompa P, Cindolo L, Schips L, Sorrentino C and Di Carlo E: SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget. 7:12372–12385. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, et al: SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer. Science. 355:84–88. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Qiao B, Zhao T, Hu F, Lam AK and Tao Q: Sox2 promotes tumor aggressiveness and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Int J Mol Med. 42:1418–1426. 2018.PubMed/NCBI | |
Gao H, Teng C, Huang W, Peng J and Wang C: SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α signaling. Int J Mol Sci. 16:21643–21657. 2015. View Article : Google Scholar : PubMed/NCBI | |
Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, de Narvajas AA, Gomez TS, Simeone DM, Bujanda L, et al: SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2:e612013. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan D, Senbanjo L, Majumdar S, Franklin RB and Chellaiah MA: Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. J Cell Biochem. 120:2413–2428. 2019. View Article : Google Scholar | |
Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W, Mou Y and Wang L: Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One. 9:e874092014. View Article : Google Scholar : PubMed/NCBI | |
Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C and Agarwal R: SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 13:372014. View Article : Google Scholar : PubMed/NCBI | |
Celià-terrassa T, Meca-cortés Ó, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R, Díaz A, Guerra-Rebollo M, et al: Epithelial-mesenchymal transition can suppress major attributes of human epithelial. J Clin Invest. 122:1849–1868. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anose BM and Sanders MM: Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol. 2011:9039182011. View Article : Google Scholar : PubMed/NCBI | |
Mooney SM, Parsana P, Hernandez JR, Liu X, Verdone JE, Torga G, Harberg CA and Pienta KJ: The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J Cell Biochem. 116:115–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA and Weinberg RA: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 154:61–74. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Jiang H, Zhang Z, Zhang G, Wang H, Zhang Q, Sun P, Xiang R and Yang S: ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget. 8:54388–54401. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu Z and Pestell RG: MicroRNAs and Cancer Stem Cells. MicroRNAs in Cancer Translational Research. William C.S.C: Springer; pp. 373–398. 2011, View Article : Google Scholar | |
Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J and Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30:770–782. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Sui X, Deng H and Ding M: Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One. 6:e233832011. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Jiao M, Li L, Wu D, Wu K, Li X, Zhu G, Dang Q, Wang X, Hsieh JT and He D: Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol. 138:675–686. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knaack H, Lenk L, Philipp LM, Miarka L, Rahn S, Viol F, Hauser C, Egberts JH, Gundlach JP, Will O, et al: Liver metastasis of pancreatic cancer: The hepatic microenvironment impacts differentiation and self-renewal capacity of pancreatic ductal epithelial cells. Oncotarget. 9:31771–31786. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sohn HM, Kim B, Park M, Ko YJ, Moon YH, Sun JM, Jeong BC, Kim YW and Lim W: Effect of CD133 overexpression on bone metastasis in prostate cancer cell line LNCaP. Oncol Lett. 18:1189–1198. 2019.PubMed/NCBI | |
Bisson I and Prowse DM: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19:683–697. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Zhu Z, Li L, Ye W, Zeng J, Gao J, Wang S, Zhang L and Huang Z: Effect of overexpression of oct4 and sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther. 12:4667–4682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanwal R, Shukla S, Walker E and Gupta S: Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Lett. 430:25–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hoofd C, Wang X, Lam S, Jenkins C, Wood B, Giambra V and Weng AP: CD44 promotes chemoresistance in T-ALL by increased drug efflux. Exp Hematol. 44:166–171.e17. 2016. View Article : Google Scholar : PubMed/NCBI |