1
|
Lowery MA, Ptashkin R, Jordan E, Berger
MF, Zehir A, Capanu M, Kemeny NE, O'Reilly EM, El-Dika I, Jarnagin
WR, et al: Comprehensive molecular profiling of intrahepatic and
extrahepatic cholangiocarcinomas: Potential targets for
intervention. Clin Cancer Res. 24:4154–4161. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Esnaola NF, Meyer JE, Karachristos A,
Maranki JL, Camp ER and Denlinger CS: Evaluation and management of
intrahepatic and extrahepatic cholangiocarcinoma. Cancer.
122:1349–1369. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Patel N and Benipal B: Incidence of
cholangiocarcinoma in the USA from 2001 to 2015: A US Cancer
Statistics Analysis of 50 States. Cureus. 11:e39622019.PubMed/NCBI
|
4
|
Goldaracena N, Gorgen A and Sapisochin G:
Current status of liver transplantation for cholangiocarcinoma.
Liver Transpl. 24:294–303. 2018. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Ustundag Y and Bayraktar Y:
Cholangiocarcinoma: A compact review of the literature. World J
Gastroenterol. 14:6458–6466. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Blechacz B: Cholangiocarcinoma: Current
knowledge and new developments. Gut Liver. 11:13–26. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Fouassier L, Marzioni M, Afonso MB, Dooley
S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S,
Segatto O, et al: Signalling networks in cholangiocarcinoma:
Molecular pathogenesis, targeted therapies and drug resistance.
Liver Int. 39 (Suppl 1):S43–S62. 2019. View Article : Google Scholar
|
8
|
Simile MM, Bagella P, Vidili G, Spanu A,
Manetti R, Seddaiu MA, Babudieri S, Madeddu G, Serra PA, Altana M
and Paliogiannis P: Targeted therapies in cholangiocarcinoma:
Emerging evidence from clinical trials. Medicina (Kaunas).
55:422019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rizvi S, Khan SA, Hallemeier CL, Kelley RK
and Gores GJ: Cholangiocarcinoma-evolving concepts and therapeutic
strategies. Nat Rev Clin Oncol. 15:95–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Labib PL, Goodchild G and Pereira SP:
Molecular pathogenesis of cholangiocarcinoma. BMC Cancer.
19:1852019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sato S, Maeda C, Hattori N, Yagi S, Tanaka
S and Shiota K: DNA methylation-dependent modulator of Gsg2/Haspin
gene expression. J Reprod Dev. 57:526–533. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tanaka H, Yoshimura Y, Nozaki M, Yomogida
K, Tsuchida J, Tosaka Y, Habu T, Nakanishi T, Okada M, Nojima H and
Nishimune Y: Identification and characterization of a haploid germ
cell-specific nuclear protein kinase (Haspin) in spermatid nuclei
and its effects on somatic cells. J Biol Chem. 274:17049–17057.
1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Higgins JM: The Haspin gene: Location in
an intron of the integrin alphaE gene, associated transcription of
an integrin alphaE-derived RNA and expression in diploid as well as
haploid cells. Gene. 267:55–69. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Eswaran J, Patnaik D, Filippakopoulos P,
Wang F, Stein RL, Murray JW, Higgins JM and Knapp S: Structure and
functional characterization of the atypical human kinase haspin.
Proc Natl Acad Sci USA. 106:20198–20203. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Higgins JM: Haspin-like proteins: A new
family of evolutionarily conserved putative eukaryotic protein
kinases. Protein Sci. 10:1677–1684. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dai J, Sultan S, Taylor SS and Higgins JM:
The kinase haspin is required for mitotic histone H3 Thr 3
phosphorylation and normal metaphase chromosome alignment. Genes
Dev. 19:472–488. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Patnaik D, Jun X, Glicksman MA, Cuny GD,
Stein RL and Higgins JM: Identification of small molecule
inhibitors of the mitotic kinase haspin by high-throughput
screening using a homogeneous time-resolved fluorescence resonance
energy transfer assay. J Biomol Screen. 13:1025–1034. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Han X, Kuang T, Ren Y, Lu Z, Liao Q and
Chen W: Haspin knockdown can inhibit progression and development of
pancreatic cancer in vitro and vivo. Exp Cell Res. 385:1116052019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yu F, Lin Y, Xu X, Liu W, Tang D, Zhou X,
Wang G, Zheng Y and Xie A: Knockdown of GSG2 inhibits prostate
cancer progression in vitro and in vivo. Int J Oncol.
57:139–150. 2020.PubMed/NCBI
|
20
|
Yi Q, Chen Q, Yan H, Zhang M, Liang C,
Xiang X, Pan X and Wang F: Aurora B kinase activity-dependent and
-independent functions of the chromosomal passenger complex in
regulating sister chromatid cohesion. J Biol Chem. 294:2021–2035.
2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Otto T and Sicinski P: Cell cycle proteins
as promising targets in cancer therapy. Nat Rev Cancer. 17:93–115.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Asghar U, Witkiewicz AK, Turner NC and
Knudsen ES: The history and future of targeting cyclin-dependent
kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Thu KL, Soria-Bretones I, Mak TW and
Cescon DW: Targeting the cell cycle in breast cancer: Towards the
next phase. Cell Cycle. 17:1871–1885. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Taylor SC, Nadeau K, Abbasi M, Lachance C,
Nguyen M and Fenrich J: The ultimate qPCR experiment: Producing
publication quality, reproducible data the first time. Trends
Biotechnol. 37:761–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu X, Nie J, Lu L, Du C, Meng F and Song
D: LINC00337 promotes tumor angiogenesis in colorectal cancer by
recruiting DNMT1, which suppresses the expression of CNN1. Cancer
Gene Ther. Dec 16–2020.(Online ahead of print). View Article : Google Scholar
|
26
|
Yatziv SL, Yudco O, Dickmann S and Devor
M: Patterns of neural activity in the mouse brain: Wakefulness vs.
General anesthesia. Neurosci Lett. 735:1352122020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Washington MK, Berlin J, Branton PA,
Burgart LJ, Carter DK, Compton CC, Frankel WL, Jessup JM, Kakar S,
Minsky B, et al: Protocol for the examination of specimens from
patients with carcinoma of the intrahepatic bile ducts. Arch Pathol
Lab Med. 134:e14–e18. 2010. View Article : Google Scholar
|
28
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Drago JZ, Chandarlapaty S and Jhaveri K:
Targeting apoptosis: A new paradigm for the treatment of estrogen
receptor-positive breast cancer. Cancer Discov. 9:323–325. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Goldar S, Khaniani MS, Derakhshan SM and
Baradaran B: Molecular mechanisms of apoptosis and roles in cancer
development and treatment. Asian Pac J Cancer Prev. 16:2129–2144.
2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mott JL, Bronk SF, Mesa RA, Kaufmann SH
and Gores GJ: BH3-only protein mimetic obatoclax sensitizes
cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Mol
Cancer Ther. 7:2339–2347. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang S, Meng J, Yang Y, Liu H, Wang C, Liu
J, Zhang Y, Wang C and Xu H: A HSP60-targeting peptide for cell
apoptosis imaging. Oncogenesis. 5:e2012016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bene A and Chambers TC: p21 functions in a
post-mitotic block checkpoint in the apoptotic response to
vinblastine. Biochem Biophys Res Commun. 380:211–217. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen J: The cell-cycle arrest and
apoptotic functions of p53 in tumor initiation and progression.
Cold Spring Harb Perspect Med. 6:a0261042016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Snigdha S, Smith ED, Prieto GA and Cotman
CW: Caspase-3 activation as a bifurcation point between plasticity
and cell death. Neurosci Bull. 28:14–24. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chakrabarty S and Kondratick L:
Insulin-like growth factor binding protein-2 stimulates
proliferation and activates multiple cascades of the
mitogen-activated protein kinase pathways in NIH-OVCAR3 human
epithelial ovarian cancer cells. Cancer Biol Ther. 5:189–197. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhong F, Yang J, Tong ZT, Chen LL, Fan LL,
Wang F, Zha XL and Li J: Guggulsterone inhibits human
cholangiocarcinoma Sk-ChA-1 and Mz-ChA-1 cell growth by inducing
caspase-dependent apoptosis and downregulation of survivin and
Bcl-2 expression. Oncol Lett. 10:1416–1422. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chang Q, Liu ZR, Wang DY, Kumar M, Chen YB
and Qin RY: Survivin expression induced by doxorubicin in
cholangiocarcinoma. World J Gastroenterol. 10:415–418. 2004.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Endo T, Abe S, Seidlar HB, Nagaoka S,
Takemura T, Utsuyama M, Kitagawa M and Hirokawa K: Expression of
IAP family proteins in colon cancers from patients with different
age groups. Cancer Immunol Immunother. 53:770–776. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Landskron G, De la Fuente M, Thuwajit P,
Thuwajit C and Hermoso MA: Chronic inflammation and cytokines in
the tumor microenvironment. J Immunol Res. 2014:1491852014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang Y and Weinberg RA:
Epithelial-to-mesenchymal transition in cancer: Complexity and
opportunities. Front Med. 12:361–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Singh M, Yelle N, Venugopal C and Singh
SK: EMT: Mechanisms and therapeutic implications. Pharmacol Ther.
182:80–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Song X, Liu X, Wang H, Wang J, Qiao Y,
Cigliano A, Utpatel K, Ribback S, Pilo MG, Serra M, et al: Combined
CDK4/6 and Pan-mTOR inhibition is synergistic against intrahepatic
cholangiocarcinoma. Clin Cancer Res. 25:403–413. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Samukawa E, Fujihara S, Oura K, Iwama H,
Yamana Y, Tadokoro T, Chiyo T, Kobayashi K, Morishita A, Nakahara
M, et al: Angiotensin receptor blocker telmisartan inhibits cell
proliferation and tumor growth of cholangiocarcinoma through cell
cycle arrest. Int J Oncol. 51:1674–1684. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Y, Ji G, Han S, Shao Z, Lu Z, Huo L,
Zhang J, Yang R, Feng Q, Shen H, et al: Tip60 suppresses
cholangiocarcinoma proliferation and metastasis via PI3k-AKT. Cell
Physiol Biochem. 50:612–628. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Peng R, Zhang PF, Zhang C, Huang XY, Ding
YB, Deng B, Bai DS and Xu YP: Elevated TRIM44 promotes intrahepatic
cholangiocarcinoma progression by inducing cell EMT via MAPK
signaling. Cancer Med. 7:796–808. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang Y, Liang Y, Yang G, Lan Y, Han J,
Wang J, Yin D, Song R, Zheng T, Zhang S, et al: Tetraspanin 1
promotes epithelial-to-mesenchymal transition and metastasis of
cholangiocarcinoma via PI3K/AKT signaling. J Exp Clin Cancer Res.
37:3002018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang MX, Gan W, Jing CY, Zheng SS, Yi Y,
Zhang J, Xu X, Lin JJ, Zhang BH and Qiu SJ: S100A11 promotes cell
proliferation via P38/MAPK signaling pathway in intrahepatic
cholangiocarcinoma. Mol Carcinog. 58:19–30. 2019. View Article : Google Scholar : PubMed/NCBI
|