1
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhu J and Thompson CB: Metabolic
regulation of cell growth and proliferation. Nat Rev Mol Cell Biol.
20:436–450. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ganapathy-Kanniappan S: Molecular
intricacies of aerobic glycolysis in cancer: Current insights into
the classic metabolic phenotype. Crit Rev Biochem Mol Biol.
53:667–682. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wise DR, DeBerardinis RJ, Mancuso A, Sayed
N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon
SB and Thompson CB: Myc regulates a transcriptional program that
stimulates mitochondrial glutaminolysis and leads to glutamine
addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Altman BJ, Stine ZE and Dang CV: From
Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev
Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang J, Pavlova NN and Thompson CB:
Cancer cell metabolism: The essential role of the nonessential
amino acid, glutamine. EMBO J. 36:1302–1315. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pinweha P, Rattanapornsompong K,
Charoensawan V and Jitrapakdee S: MicroRNAs and oncogenic
transcriptional regulatory networks controlling metabolic
reprogramming in cancers. Comput Struct Biotechnol J. 14:223–233.
2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tarrado-Castellarnau M, de Atauri P and
Cascante M: Oncogenic regulation of tumor metabolic reprogramming.
Oncotarget. 7:62726–62753. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dejure FR and Eilers M: MYC and tumor
metabolism: Chicken and egg. EMBO J. 36:3409–3420. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dang CV: A Time for MYC: Metabolism and
therapy. Cold Spring Harb Symp Quant Biol. 81:79–83. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bott AJ, Peng IC, Fan Y, Faubert B, Zhao
L, Li J, Neidler S, Sun Y, Jaber N, Krokowski D, et al: Oncogenic
Myc induces expression of glutamine synthetase through promoter
demethylation. Cell Metab. 22:1068–1077. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Arad G, Freikopf A and Kulka RG:
Glutamine-stimulated modification and degradation of glutamine
synthetase in hepatoma tissue culture cells. Cell. 8:95–101. 1976.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hann SR, Sloan-Brown K and Spotts GD:
Translational activation of the non-AUG-initiated c-myc 1 protein
at high cell densities due to methionine deprivation. Genes Dev.
6:1229–1240. 1992. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun L, Song L, Wan Q, Wu G, Li X, Wang Y,
Wang J, Liu Z, Zhong X, He X, et al: cMyc-mediated activation of
serine biosynthesis pathway is critical for cancer progression
under nutrient deprivation conditions. Cell Res. 25:429–444. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu S, Yin X, Fang X, Zheng J, Li L, Liu X
and Chu L: c-MYC responds to glucose deprivation in a
cell-type-dependent manner. Cell Death Discov. 1:150572015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wong WJ, Qiu B, Nakazawa MS, Qing G and
Simon MC: MYC degradation under low O2 tension promotes survival by
evading hypoxia-induced cell death. Mol Cell Biol. 33:3494–3504.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Effenberger M, Bommert KS, Kunz V, Kruk J,
Leich E, Rudelius M, Bargou R and Bommert K: Glutaminase inhibition
in multiple myeloma induces apoptosis via MYC degradation.
Oncotarget. 8:85858–85867. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dejure FR, Royla N, Herold S, Kalb J, Walz
S, Ade CP, Mastrobuoni G, Vanselow JT, Schlosser A, Wolf E, et al:
The MYC mRNA 3′-UTR couples RNA polymerase II function to glutamine
and ribonucleotide levels. EMBO J. 36:1854–1868. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hann SR, Dixit M, Sears RC and Sealy L:
The alternatively initiated c-Myc proteins differentially regulate
transcription through a noncanonical DNA-binding site. Genes Dev.
8:2441–2452. 1994. View Article : Google Scholar : PubMed/NCBI
|
22
|
Blackwood EM, Lugo TG, Kretzner L, King
MW, Street AJ, Witte ON and Eisenman RN: Functional analysis of the
AUG- and CUG-initiated forms of the c-Myc protein. Mol Biol Cell.
5:597–609. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sato K, Masuda T, Hu Q, Tobo T, Gillaspie
S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, et al:
Novel oncogene 5MP1 reprograms c-Myc translation initiation to
drive malignant phenotypes in colorectal cancer. EBioMedicine.
44:387–402. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hay N: Reprogramming glucose metabolism in
cancer: Can it be exploited for cancer therapy? Nat Rev Cancer.
16:635–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fung MKL and Chan GC: Drug-induced amino
acid deprivation as strategy for cancer therapy. J Hematol Oncol.
10:1442017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Matés JM, Di Paola FJ, Campos-Sandoval JA,
Mazurek S and Márquez J: Therapeutic targeting of glutaminolysis as
an essential strategy to combat cancer. Semin Cell Dev Biol.
98:34–43. 2020. View Article : Google Scholar
|
27
|
Zhang J, Fan J, Venneti S, Cross JR,
Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, et
al: Asparagine plays a critical role in regulating cellular
adaptation to glutamine depletion. Mol Cell. 56:205–218. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pavlova NN, Hui S, Ghergurovich JM, Fan J,
Intlekofer AM, White RM, Rabinowitz JD, Thompson CB and Zhang J: As
extracellular glutamine levels decline, asparagine becomes an
essential amino acid. Cell Metab. 27:428–438.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mondello C, Chiesa M, Rebuzzini P, Zongaro
S, Verri A, Colombo T, Giulotto E, Dincalci M, Franceschi C and
Nuzzo F: Karyotype instability and anchorage-independent growth in
telomerase-immortalized fibroblasts from two centenarian
individuals. Biochem Biophys Res Commun. 308:914–921. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zongaro S, de Stanchina E, Colombo T,
DIncalci M, Giulotto E and Mondello C: Stepwise neoplastic
transformation of a telomerase immortalized fibroblast cell line.
Cancer Res. 65:11411–11418. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Belgiovine C, Frapolli R, Bonezzi K,
Chiodi I, Favero F, Mello-Grand M, Dei Tos AP, Giulotto E,
Taraboletti G, DIncalci M and Mondello C: Reduced expression of the
ROCK Inhibitor Rnd3 is associated with increased invasiveness and
metastatic potential in mesenchymal tumor cells. PLoS One.
5:e141542010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ostano P, Bione S, Belgiovine C, Chiodi I,
Ghimenti C, Scovassi AI, Chiorino G and Mondello C: Cross-analysis
of gene and miRNA genome-wide expression profiles in human
fibroblasts at different stages of transformation. OMICS. 16:24–36.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bono B, Ostano P, Peritore M, Gregnanin I,
Belgiovine C, Liguori M, Allavena P, Chiorino G, Chiodi I and
Mondello C: Cells with stemness features are generated from in
vitro transformed human fibroblasts. Sci Rep. 8:138382018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chiodi I, Picco G, Martino C and Mondello
C: Cellular response to glutamine and/or glucose deprivation in
in vitro transformed human fibroblasts. Oncol Rep.
41:3555–3564. 2019.PubMed/NCBI
|
35
|
Belgiovine C, Chiesa G, Chiodi I, Frapolli
R, Bonezzi K, Taraboletti G, DIncalci M and Mondello C: Snail
levels control the migration mechanism of mesenchymal tumor cells.
Oncol Lett. 12:767–771. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xu L, Begum S, Hearn JD and Hynes RO:
GPR56, an atypical G protein-coupled receptor, binds tissue
transglutaminase, TG2, and inhibits melanoma tumor growth and
metastasis. Proc Natl Acad Sci USA. 103:9023–9028. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Stegink LD, Filer LJ Jr, Brummel MC, Baker
GL, Krause WL, Bell EF and Ziegler EE: Plasma amino acid
concentrations and amino acid ratios in normal adults and adults
heterozygous for phenylketonuria ingesting a hamburger and milk
shake meal. Am J Clin Nutr. 53:670–675. 1991. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ubuka T and Meister A: Studies on the
utilization of asparagine by mouse leukemia cells. J Natl Cancer
Inst. 46:291–298. 1971.PubMed/NCBI
|
40
|
Freikopf A and Kulka RG: Specificity of
the glutamine-binding site involved in the regulation of
glutamine-synthetase activity in hepatoma tissue-culture cells. Eur
J Biochem. 56:483–492. 1975. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yap JL, Wang H, Hu A, Chauhan J, Jung KY,
Gharavi RB, Prochownik EV and Fletcher S: Pharmacophore
identification of c-Myc inhibitor 10074-G5. Bioorg Med Chem Lett.
23:370–374. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yuneva M, Zamboni N, Oefner P,
Sachidanandam R and Lazebnik Y: Deficiency in glutamine but not
glucose induces MYC-dependent apoptosis in human cells. J Cell
Biol. 178:93–105. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Qing G, Li B, Vu A, Skuli N, Walton ZE,
Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, et al: ATF4
regulates MYC-mediated neuroblastoma cell death upon glutamine
deprivation. Cancer Cell. 22:631–644. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tardito S, Oudin A, Ahmed SU, Fack F,
Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner
A, et al: Glutamine synthetase activity fuels nucleotide
biosynthesis and supports growth of glutamine-restricted
glioblastoma. Nat Cell Biol. 17:1556–1568. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bott AJ, Shen J, Tonelli C, Zhan L,
Sivaram N, Jiang YP, Yu X, Bhatt V, Chiles E, Zhong H, et al:
Glutamine anabolism plays a critical role in pancreatic cancer by
coupling carbon and nitrogen metabolism. Cell Rep. 29:1287–1298.e6.
2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Biffo S, Manfrini N and Ricciardi S:
Crosstalks between translation and metabolism in cancer. Curr Opin
Genet Dev. 48:75–81. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Singh K, Lin J, Zhong Y, Burčul A, Mohan
P, Jiang M, Sun L, Yong-Gonzalez V, Viale A, Cross JR, et al: c-MYC
regulates mRNA translation efficiency and start-site selection in
lymphoma. J Exp Med. 216:1509–1524. 2019. View Article : Google Scholar : PubMed/NCBI
|