1
|
Hemler ME: Tetraspanin functions and
associated microdomains. Nat Rev Mol Cell Biol. 6:801–811. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Liang P, Miao M, Liu Z, Wang H, Jiang W,
Ma S, Li C and Hu R: CD9 expression indicates a poor outcome in
acute lymphoblastic leukemia. Cancer Biomark. 21:781–786. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Leung KT, Zhang C, Chan KYY, Li K, Cheung
JTK, Ng MHL, Zhang XB, Sit T, Lee WYW, Kang W, et al: CD9 blockade
suppresses disease progression of high-risk pediatric B-cell
precursor acute lymphoblastic leukemia and enhances
chemosensitivity. Leukemia. 34:709–720. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nishida H, Yamazaki H, Yamada T, Iwata S,
Dang NH, Inukai T, Sugita K, Ikeda Y and Morimoto C: CD9 correlates
with cancer stem cell potentials in human B-acute lymphoblastic
leukemia cells. Biochem Biophys Res Commun. 382:57–62. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamazaki H, Xu CW, Naito M, Nishida H,
Okamoto T, Ghani FI, Iwata S, Inukai T, Sugita K and Morimoto C:
Regulation of cancer stem cell properties by CD9 in human B-acute
lymphoblastic leukemia. Biochem Biophys Res Commun. 409:14–21.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Arnaud MP, Vallee A, Robert G, Bonneau J,
Leroy C, Varin-Blank N, Rio AG, Troadec MB, Galibert MD and
Gandemer V: CD9, a key actor in the dissemination of lymphoblastic
leukemia, modulating CXCR4-mediated migration via RAC1 signaling.
Blood. 126:1802–1812. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xing C, Xu W, Shi Y, Zhou B, Wu D, Liang
B, Zhou Y, Gao S and Feng J: CD9 knockdown suppresses cell
proliferation, adhesion, migration and invasion, while promoting
apoptosis and the efficacy of chemotherapeutic drugs and imatinib
in Ph+ ALL SUP-B15 cells. Mol Med Rep. 22:2791–2800.
2020.PubMed/NCBI
|
8
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S,
Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell.
170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sugiura T and Berditchevski F: Function of
alpha3beta1-tetraspanin protein complexes in tumor cell invasion.
Evidence for the role of the complexes in production of matrix
metalloproteinase 2 (MMP-2). J Cell Biol. 146:1375–1389. 1999.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sawada S, Yoshimoto M, Odintsova E,
Hotchin NA and Berditchevski F: The tetraspanin CD151 functions as
a negative regulator in the adhesion-dependent activation of Ras. J
Biol Chem. 278:26323–26326. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qi JC, Wang J, Mandadi S, Tanaka K,
Roufogalis BD, Madigan MC, Lai K, Yan F, Chong BH, Stevens RL and
Krilis SA: Human and mouse mast cells use the tetraspanin CD9 as an
alternate interleukin-16 receptor. Blood. 107:135–142. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang L, Zhu S, Shi X and Sha W: The
silence of p66(Shc) in HCT8 cells inhibits the viability via
PI3K/AKT/Mdm-2/p53 signaling pathway. Int J Clin Exp Pathol.
8:9097–9104. 2015.PubMed/NCBI
|
13
|
Tang C, Lu YH, Xie JH, Wang F, Zou JN,
Yang JS, Xing YY and Xi T: Downregulation of survivin and
activation of caspase-3 through the PI3K/Akt pathway in ursolic
acid-induced HepG2 cell apoptosis. Anticancer Drugs. 20:249–258.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Abbas T and Dutta A: p21 in cancer:
Intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Wang H, Jia XH, Chen JR, Yi YJ, Wang JY,
Li YJ and Xie SY: HOXB4 knockdown reverses multidrug resistance of
human myelogenous leukemia K562/ADM cells by downregulating P-gp,
MRP1 and BCRP expression via PI3K/Akt signaling pathway. Int J
Oncol. 49:2529–2537. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Klein G, Vellenga E, Fraaije MW, Kamps WA
and de Bont ES: The possible role of matrix metalloproteinase
(MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol
Hematol. 50:87–100. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou R, Xu L, Ye M, Liao M, Du H and Chen
H: Formononetin inhibits migration and invasion of MDA-MB-231 and
4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through
PI3K/AKT signaling pathways. Horm Metab Res. 46:753–760. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yadav V and Denning MF: Fyn is induced by
Ras/PI3K/Akt signaling and is required for enhanced
invasion/migration. Mol Carcinog. 50:346–352. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tai YL, Chen LC and Shen TL: Emerging
roles of focal adhesion kinase in cancer. Biomed Res Int.
2015:6906902015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Di Zazzo E, Feola A, Zuchegna C, Romano A,
Donini CF, Bartollino S, Costagliola C, Frunzio R, Laccetti P, Di
Domenico M and Porcellini A: The p85 regulatory subunit of PI3K
mediates cAMP-PKA and insulin biological effects on MCF-7 cell
growth and motility. ScientificWorldJournal. 2014:5658392014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Breitkopf SB, Yang X, Begley MJ, Kulkarni
M, Chiu YH, Turke AB, Lauriol J, Yuan M, Qi J, Engelman JA, et al:
A cross-species study of pi3k protein-protein interactions reveals
the direct interaction of P85 and SHP2. Sci Rep. 6:204712016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee JY, Chiu YH, Asara J and Cantley LC:
Inhibition of PI3K binding to activators by serine phosphorylation
of PI3K regulatory subunit p85alpha Src homology-2 domains. Proc
Natl Acad Sci USA. 108:14157–14162. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Comb WC, Hutti JE, Cogswell P, Cantley LC
and Baldwin AS: p85α SH2 domain phosphorylation by IKK promotes
feedback inhibition of PI3K and Akt in response to cellular
starvation. Mol Cell. 45:719–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hofmann BT and Jücker M: Activation of
PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α
regulatory subunit of PI3K is enhanced by deletion of its
c-terminal SH2 domain. Cell Signal. 24:1950–1954. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jaiswal BS, Janakiraman V, Kljavin NM,
Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring
P, et al: Somatic mutations in p85alpha promote tumorigenesis
through class IA PI3K activation. Cancer Cell. 16:463–474. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Folgiero V, Di Carlo SE, Bon G, Spugnini
EP, Di Benedetto A, Germoni S, Pia Gentileschi M, Accardo A,
Milella M, Morelli G, et al: Inhibition of p85, the non-catalytic
subunit of phosphatidylinositol 3-kinase, exerts potent antitumor
activity in human breast cancer cells. Cell Death Dis. 3:e4402012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun M, Hillmann P, Hofmann BT, Hart JR and
Vogt PK: Cancer-derived mutations in the regulatory subunit
p85alpha of phosphoinositide 3-kinase function through the
catalytic subunit p110alpha. Proc Natl Acad Sci USA.
107:15547–15552. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Feola A, Cimini A, Migliucci F, Iorio R,
Zuchegna C, Rothenberger R, Cito L, Porcellini A, Unteregger G,
Tombolini V, et al: The inhibition of p85αPI3KSer83 phosphorylation
prevents cell proliferation and invasion in prostate cancer cells.
J Cell Biochem. 114:2114–2119. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fruman DA, Snapper SB, Yballe CM, Davidson
L, Yu JY, Alt FW and Cantley LC: Impaired B cell development and
proliferation in absence of phosphoinositide 3-kinase p85alpha.
Science. 283:393–397. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Terauchi Y, Tsuji Y, Satoh S, Minoura H,
Murakami K, Okuno A, Inukai K, Asano T, Kaburagi Y, Ueki K, et al:
Increased insulin sensitivity and hypoglycaemia in mice lacking the
p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet.
21:230–235. 1999. View
Article : Google Scholar : PubMed/NCBI
|