1
|
Alfarouk KO, Stock CM, Taylor S, Walsh M,
Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO,
Harguindey S, et al: Resistance to cancer chemotherapy: Failure in
drug response from ADME to P-gp. Cancer Cell Int. 15:712015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu Q, Yang Z, Nie Y, Shi Y and Fan D:
Multi-drug resistance in cancer chemotherapeutics: Mechanisms and
lab approaches. Cancer Lett. 347:159–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Feng Y, He D, Yao Z and Klionsky DJ: The
machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tanida I, Ueno T and Kominami E: LC3 and
autophagy. Methods Mol Biol. 445:77–88. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Runwal G, Stamatakou E, Siddiqi FH, Puri
C, Zhu Y and Rubinsztein DC: LC3-positive structures are prominent
in autophagy-deficient cells. Sci Rep. 9:101472019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Oh S, Xiaofei E, Ni D, Pirooz SD, Lee JY,
Lee D, Zhao Z, Lee S, Lee H, Ku B, et al: Downregulation of
autophagy by Bcl-2 promotes MCF7 breast cancer cell growth
independent of its inhibition of apoptosis. Cell Death Differ.
18:452–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang J, Pi C and Wang G: Inhibition of
PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy
in hepatocellular carcinoma cells. Biomed Pharmacother.
103:699–707. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tekirdag KA, Korkmaz G, Ozturk DG, Agami R
and Gozuacik D: MIR181A regulates starvation- and rapamycin-induced
autophagy through targeting of ATG5. Autophagy. 9:374–385. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Fang LM, Li B, Guan JJ, Xu HD, Shen GH,
Gao QG and Qin ZH: Transcription factor EB is involved in
autophagy-mediated chemoresistance to doxorubicin in human cancer
cells. Acta Pharmacol Sin. 38:1305–1316. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mishima Y, Terui Y, Mishima Y, Taniyama A,
Kuniyoshi R, Takizawa T, Kimura S, Ozawa K and Hatake K: Autophagy
and autophagic cell death are next targets for elimination of the
resistance to tyrosine kinase inhibitors. Cancer Sci. 99:2200–2208.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hu YL, Jahangiri A, Delay M and Aghi MK:
Tumor cell autophagy as an adaptive response mediating resistance
to treatments such as antiangiogenic therapy. Cancer Res.
72:4294–4299. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun WL, Chen J, Wang YP and Zheng H:
Autophagy protects breast cancer cells from epirubicin-induced
apoptosis and facilitates epirubicin-resistance development.
Autophagy. 7:1035–1044. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J
and Ma X: TRPC5-induced autophagy promotes drug resistance in
breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Rep.
7:31582017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kanzawa T, Germano IM, Komata T, Ito H,
Kondo Y and Kondo S: Role of autophagy in temozolomide-induced
cytotoxicity for malignant glioma cells. Cell Death Differ.
11:448–457. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lv XA, Wang B, Xu XH, Lei P, Bin W, Dong
XX, Zeng CH and Du QW: Curcumin re-sensitizes multidrug resistant
(MDR) breast cancer to cisplatin through inducing autophagy by
decreasing CCAT1 expression. RSC Adv. 7:33572–33579. 2017.
View Article : Google Scholar
|
17
|
Wu J, Li W, Ning J, Yu W, Rao T and Cheng
F: Long noncoding RNA UCA1 targets miR-582-5p and contributes to
the progression and drug resistance of bladder cancer cells through
ATG7-mediated autophagy inhibition. Onco Targets Ther. 12:495–508.
2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen S, Wu J, Jiao K, Wu Q, Ma J, Chen D,
Kang J and Zhao G, Shi Y, Fan D and Zhao G: MicroRNA-495-3p
inhibits multidrug resistance by modulating autophagy through
GRP78/mTOR axis in gastric cancer. Cell Death Dis. 9:10702018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Y, Jiang W, Hu Y, Da Z, Zeng C, Tu M,
Deng Z and Xiao W: MicroRNA-199a-5p inhibits cisplatin-induced drug
resistance via inhibition of autophagy in osteosarcoma cells. Oncol
Lett. 12:4203–4208. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y, Zhang G, Wu B, Yang W and Liu Z:
MiR-199a-5p represses protective autophagy and overcomes
chemoresistance by directly targeting DRAM1 in acute myeloid
leukemia. J Oncol. 2019:56134172019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen PH, Liu AJ, Ho KH, Chiu YT, Anne Lin
ZH, Lee YT, Shih CM and Chen KC: MicroRNA-199a/b-5p enhance
imatinib efficacy via repressing WNT2 signaling-mediated protective
autophagy in imatinib-resistant chronic myeloid leukemia cells.
Chem Biol Interact. 291:144–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Y, Li L, Guan Y, Liu X, Meng Q and Guo
Q: MiR-92b regulates the cell growth, cisplatin chemosensitivity of
A549 non small cell lung cancer cell line and target PTEN. Biochem
Biophys Res Commun. 440:604–610. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Y, Chen L, Feng L, Zhu M, Shen Q, Fang
Y, Liu X and Zhang X: NEK2 promotes proliferation, migration and
tumor growth of gastric cancer cells via regulating KDM5B/H3K4me3.
Am J Cancer Res. 9:2364–2378. 2019.PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr
M, Hijlkema KJ, Coppes RP, Engedal N, Mari M and Reggiori F:
Chloroquine inhibits autophagic flux by decreasing
autophagosome-lysosome fusion. Autophagy. 14:1435–1455. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Moore CE, Wang X, Xie J, Pickford J,
Barron J, Regufe da Mota S, Versele M and Proud CG: Elongation
factor 2 kinase promotes cell survival by inhibiting protein
synthesis without inducing autophagy. Cell Signal. 28:284–293.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen XL, Liu P, Zhu WL and Lou LG:
DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts
antitumor activity against colon cancer. Acta Pharmacol Sin.
42:132–141. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Duprez L, Wirawan E, Vanden Berghe T and
Vandenabeele P: Major cell death pathways at a glance. Microbes
Infect. 11:1050–1062. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chang H and Zou Z: Targeting autophagy to
overcome drug resistance: Further developments. J Hematol Oncol.
13:1592020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yoon JH, Ahn SG, Lee BH, Jung SH and Oh
SH: Role of autophagy in chemoresistance: Regulation of the
ATM-mediated DNA-damage signaling pathway through activation of
DNA-PKcs and PARP-1. Biochem Pharmacol. 83:747–757. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li S and Wei Y: Association of HMGB1,
BRCA1 and P62 expression in ovarian cancer and chemotherapy
sensitivity. Oncol Lett. 15:9572–9576. 2018.PubMed/NCBI
|
32
|
Huang CY, Chiang SF, Chen WT, Ke TW, Chen
TW, You YS, Lin CY, Chao KSC and Huang CY: HMGB1 promotes
ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance
through RAGE in colorectal cancer. Cell Death Dis. 9:10042018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zheng H, Chen JN, Yu X, Jiang P, Yuan L,
Shen HS, Zhao LH, Chen PF and Yang M: HMGB1 enhances drug
resistance and promotes in vivo tumor growth of lung cancer cells.
DNA Cell Biol. 35:622–627. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wirawan E, Vanden Berghe T, Lippens S,
Agostinis P and Vandenabeele P: Autophagy: For better or for worse.
Cell Res. 22:43–61. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xie T, Li SJ, Guo MR, Wu Y, Wang HY, Zhang
K, Zhang X, Ouyang L and Liu J: Untangling knots between autophagic
targets and candidate drugs, in cancer therapy. Cell Prolif.
48:119–139. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu H, Yang JM, Jin S, Zhang H and Hait WN:
Elongation factor-2 kinase regulates autophagy in human
glioblastoma cells. Cancer Res. 66:3015–3023. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pan Z, Chen Y, Liu J, Jiang Q, Yang S, Guo
L and He G: Design, synthesis, and biological evaluation of
polo-like kinase 1/eukaryotic elongation factor 2 kinase
(PLK1/EEF2K) dual inhibitors for regulating breast cancer cells
apoptosis and autophagy. Eur J Med Chem. 144:517–528. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Xie CM, Liu XY, Sham KW, Lai JM and Cheng
CH: Silencing of EEF2K (eukaryotic elongation factor-2 kinase)
reveals AMPK-ULK1-dependent autophagy in colon cancer cells.
Autophagy. 10:1495–1508. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun D, Zhu L, Zhao Y, Jiang Y, Chen L, Yu
Y and Ouyang L: Fluoxetine induces autophagic cell death via
eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.
Cell Prolif. 51:e124022018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang H, Gao H, Duan S and Song X:
Inhibition of microRNA-199a-5p reduces the replication of HCV via
regulating the pro-survival pathway. Virus Res. 208:7–12. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang G, Sun D, Li W and Xin Y: AKNA is a
potential prognostic biomarker in gastric cancer and function as a
tumor suppressor by modulating EMT-related pathways. Biomed Res
Int. 2020:67267592020.PubMed/NCBI
|
42
|
Murugesan M and Premkumar K: Integrative
miRNA-mRNA functional analysis identifies miR-182 as a potential
prognostic biomarker in breast cancer. Mol Omics. Apr 22–2021.(Epub
ahead of print). doi: 10.1039/d0mo00160k. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang K, Zhang X, Cai Z, Zhou J, Cao R,
Zhao Y, Chen Z, Wang D, Ruan W, Zhao Q, et al: A novel class of
microRNA-recognition elements that function only within open
reading frames. Nat Struct Mol Biol. 25:1019–1027. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Moscat J, Karin M and Diaz-Meco MT: p62 in
cancer: Signaling adaptor beyond autophagy. Cell. 167:606–609.
2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bjorkoy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Peng H, Yang J, Li G, You Q, Han W, Li T,
Gao D, Xie X, Lee BH, Du J, et al: Ubiquitylation of
p62/sequestosome1 activates its autophagy receptor function and
controls selective autophagy upon ubiquitin stress. Cell Res.
27:657–674. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gao Z, Gammoh N, Wong PM,
Erdjument-Bromage H, Tempst P and Jiang X: Processing of autophagic
protein LC3 by the 20S proteasome. Autophagy. 6:126–137. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Bjørkøy G, Lamark T, Pankiv S, Øvervatn A,
Brech A and Johansen T: Monitoring autophagic degradation of
p62/SQSTM1. Methods Enzymol. 452:181–197. 2009. View Article : Google Scholar
|
49
|
Zhang CF, Gruber F, Ni C, Mildner M,
Koenig U, Karner S, Barresi C, Rossiter H, Narzt MS, Nagelreiter
IM, et al: Suppression of autophagy dysregulates the antioxidant
response and causes premature senescence of melanocytes. J Invest
Dermatol. 135:1348–1357. 2015. View Article : Google Scholar : PubMed/NCBI
|