RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation
- Authors:
- Yusha Zhu
- Qiao Yi Chen
- Ashley Jordan
- Hong Sun
- Nirmal Roy
- Max Costa
-
Affiliations: Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China - Published online on: June 7, 2021 https://doi.org/10.3892/or.2021.8105
- Article Number: 154
This article is mentioned in:
Abstract
Huvinen M and Pukkala E: Cancer incidence among Finnish ferrochromium and stainless steel production workers in 1967–2011: A cohort study. BMJ Open. 3:e0038192013. View Article : Google Scholar : PubMed/NCBI | |
Grimsrud TK and Andersen A: Evidence of carcinogenicity in humans of water-soluble nickel salts. J Occup Med Toxicol. 5:72010. View Article : Google Scholar : PubMed/NCBI | |
Andersen A, Berge SR, Engeland A and Norseth T: Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med. 53:708–713. 1996. View Article : Google Scholar : PubMed/NCBI | |
Seilkop SK and Oller AR: Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol. 37:173–190. 2003. View Article : Google Scholar : PubMed/NCBI | |
Anttila A, Pukkala E, Aitio A, Rantanen T and Karjalainen S: Update of cancer incidence among workers at a copper/nickel smelter and nickel refinery. Int Arch Occup Environ Health. 71:245–250. 1998. View Article : Google Scholar : PubMed/NCBI | |
Moulin JJ, Clavel T, Roy D, Dananche B, Marquis N, Fevotte J and Fontana JM: Risk of lung cancer in workers producing stainless steel and metallic alloys. Int Arch Occup Environ Health. 73:171–180. 2000. View Article : Google Scholar : PubMed/NCBI | |
Clancy HA, Sun H, Passantino L, Kluz T, Munoz A, Zavadil J and Costa M: Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 4:784–793. 2012. View Article : Google Scholar : PubMed/NCBI | |
Savarese F, Davila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, Takahashi K, Jenuwein T, Kohwi-Shigematsu T, Fisher AG and Grosschedl R: Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev. 23:2625–2638. 2009. View Article : Google Scholar : PubMed/NCBI | |
Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, Naicker K, Klinger R, Kampf C, Asplund A, et al: SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 35:937–948. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang G, Cui Y, Yu X, Wu Z, Ding G and Cao L: miR-211 suppresses hepatocellular carcinoma by downregulating SATB2. Oncotarget. 6:9457–9466. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cartularo L, Kluz T, Cohen L, Shen SS and Costa M: Molecular mechanisms of malignant transformation by low dose cadmium in normal human bronchial epithelial cells. PLoS One. 11:e01550022016. View Article : Google Scholar : PubMed/NCBI | |
Fukuhara M, Agnarsdottir M, Edqvist PH, Coter A and Ponten F: SATB2 is expressed in Merkel cell carcinoma. Arch Dermatol Res. 308:449–454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Ma Y, Shankar S and Srivastava RK: SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep. 7:109392017. View Article : Google Scholar : PubMed/NCBI | |
Bae T, Rho K, Choi JW, Horimoto K, Kim W and Kim S: Identification of upstream regulators for prognostic expression signature genes in colorectal cancer. BMC Syst Biol. 7:862013. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Ma Y, Shankar S and Srivastava RK: Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker. Oncotarget. 7:57783–57797. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Jordan A, Kluz T, Shen S, Sun H, Cartularo LA and Costa M: SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells. Toxicol Appl Pharmacol. 293:30–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Qu Z, Tickner J, Xu J, Dai K and Zhang X: The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev. 25:35–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem. 95:445–453. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Li Y, Osimiri L and Zhang C: Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem. 286:32995–33002. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Xu Y, Qu H, Yu Y, Li W, Zhao Y and Qiu G: Decrease of miR-31 induced by TNF-α inhibitor activates SATB2/RUNX2 pathway and promotes osteogenic differentiation in ethanol-induced osteonecrosis. J Cell Physiol. 234:4314–4326. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, Gu P and Fan X: Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 22:2278–2286. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA. 107:19879–19884. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G and Grosschedl R: SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 125:971–986. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA and Fish JL: Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone. 127:488–498. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P and Chen J: Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A. 17:1767–1776. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR, Esposito I, Lohr M, Friess H and Kleeff J: Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 97:1106–1115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL and Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25:589–600. 2006. View Article : Google Scholar : PubMed/NCBI | |
Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, Yamane T and Katoh R: Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 92:1181–1190. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, Waring P, McArthur GA, Walkley CR, Holloway AJ, et al: Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol. 167:925–934. 2004. View Article : Google Scholar : PubMed/NCBI | |
Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, et al: Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 29:811–821. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wei L, Chen Q and Terek RM: HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity. J Biol Chem. 284:21881–21890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Papachristou DJ, Papachristou GI, Papaefthimiou OA, Agnantis NJ, Basdra EK and Papavassiliou AG: The MAPK-AP-1/-Runx2 signalling axes are implicated in chondrosarcoma pathobiology either independently or via up-regulation of VEGF. Histopathology. 47:565–574. 2005.PubMed/NCBI | |
Inman CK and Shore P: The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 278:48684–48689. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA and Frenkel B: Runx2 transcriptome of prostate cancer cells: Insights into invasiveness and bone metastasis. Mol Cancer. 9:2582010. View Article : Google Scholar : PubMed/NCBI | |
Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY, Wong YC, Wang X and Chan KW: TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis. 29:1509–1518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A and Niederhuber J: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang MH, Yu J, Chen N, Wang XY, Liu XY, Wang S and Ding YQ: Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One. 8:e853532013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ and Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 108:9863–9868. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A and Costa M: Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog. 57:968–977. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Guo S, Fu Y, Zhou P, Zhang P, Du Y, Li M, Cheng J and Jiang H: Dental follicle cells participate in tooth eruption via the RUNX2-miR-31-SATB2 Loop. J Dent Res. 94:936–944. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB and Stein GS: A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA. 105:13906–13911. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 284:15676–15684. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pawlicki JM and Steitz JA: Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol. 20:52–61. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Chen QY, Li AH and Costa M: The role of non-coding RNAs involved in nickel-induced lung carcinogenic mechanisms. Inorganics. 7:812019. View Article : Google Scholar | |
Chen QY, Des Marais T and Costa M: Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis. 40:393–402. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Wang G, Liu Y, Huang Z, Zhang C, Ning K, Yu C, Shen Y, Wang M, Li Y, et al: The miR-599 promotes non-small cell lung cancer cell invasion via SATB2. Biochem Biophys Res Commun. 485:35–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
El Bezawy R, Cominetti D, Fenderico N, Zuco V, Beretta GL, Dugo M, Arrighetti N, Stucchi C, Rancati T, Valdagni R, et al: miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett. 395:53–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Wang G, Liu H and Xiong C: SATB2 targeted by methylated miR-34c-5p suppresses proliferation and metastasis attenuating the epithelial-mesenchymal transition in colorectal cancer. Cell Prolif. 51:e124552018. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Liu S, Chen P, Fu D, Hou Y, Hu J, Liu Z, Jiang Y, Cao X, Cheng C, et al: miR-449a inhibits colorectal cancer progression by targeting SATB2. Oncotarget. 8:100975–100988. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo LJ, Yang F, Ding JJ, Yan DL, Wang DD, Yang SJ, Ding L, Li J, Chen D, Ma R, et al: miR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene. 594:47–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Xu F, Zhang L, Qian Y, Chen J, Huang H and Yu Y: MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem. 387:227–239. 2014. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ratnadiwakara M and Änkö ML: mRNA stability assay using transcription inhibition by actinomycin D in mouse pluripotent stem cells. Bio-Protocol. 8:e30722018. View Article : Google Scholar | |
Costa M: Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 31:321–337. 1991. View Article : Google Scholar : PubMed/NCBI | |
Chen QY and Costa M: A comprehensive review of metal-induced cellular transformation studies. Toxicol Appl Pharmacol. 331:33–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, et al: Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy. 12:1687–1703. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Li W, Ma R, Ji W, Wang Q, Li D, Xiao Y, Wei Q, Lai Y, Yang P, et al: Development of human cell models for assessing the carcinogenic potential of chemicals. Toxicol Appl Pharmacol. 232:478–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rani AS, Qu DQ, Sidhu MK, Panagakos F, Shah V, Klein KM, Brown N, Pathak S and Kumar S: Transformation of immortal, non-tumorigenic osteoblast-like human osteosarcoma cells to the tumorigenic phenotype by nickel sulfate. Carcinogenesis. 14:947–953. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Fan J, Hitron JA, Son YO, Wise JT, Roy RV, Kim D, Dai J, Pratheeshkumar P, Zhang Z and Shi X: Cancer stem-like cells accumulated in nickel-induced malignant transformation. Toxicol Sci. 151:376–387. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Salnikow K, Kluz T, Chen LC, Su WC and Costa M: Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. Toxicol Appl Pharmacol. 192:201–211. 2003. View Article : Google Scholar : PubMed/NCBI | |
Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK and Winn RA: The soft agar colony formation assay. J Vis Exp. e519982014.PubMed/NCBI | |
Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, et al: Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol. 35 Suppl:S244–S275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sahai E: Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 15:87–96. 2005. View Article : Google Scholar : PubMed/NCBI | |
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI | |
Valenti MT, Serafini P, Innamorati G, Gili A, Cheri S, Bassi C and Dalle Carbonare L: Runx2 expression: A mesenchymal stem marker for cancer. Oncol Lett. 12:4167–4172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC and Hinds PW: The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell. 8:303–316. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Meng L, Sun H, Li Z, Zhang X and Hua S: MicroRNA-196b Inhibits cell growth and metastasis of lung cancer cells by targeting Runx2. Cell Physiol Biochem. 43:757–767. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herreno AM, Ramirez AC, Chaparro VP, Fernandez MJ, Canas A, Morantes CF, Moreno OM, Bruges RE, Mejia JA, Bustos FJ, et al: Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer lung cancer: Epigenetic control of the RUNX2 P1 promoter. Tumour Biol. 41:10104283198510142019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhou RJ, Zhang GQ and Xu JP: Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: A 5-year follow-up study. Tumour Biol. 34:1807–1812. 2013. View Article : Google Scholar : PubMed/NCBI | |
Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD Jr and Passaniti A: Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res. 27:913–925. 2012. View Article : Google Scholar : PubMed/NCBI | |
Underwood KF, Mochin MT, Brusgard JL, Choe M, Gnatt A and Passaniti A: A quantitative assay to study protein: DNA interactions, discover transcriptional regulators of gene expression, and identify novel anti-tumor agents. J Vis Exp. 78:e505122013.PubMed/NCBI | |
Kim MS, Gernapudi R, Choi EY, Lapidus RG and Passaniti A: Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget. 8:70916–70940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dobreva G, Dambacher J and Grosschedl R: SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17:3048–3061. 2003. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar | |
Flynt AS and Lai EC: Biological principles of microRNA-mediated regulation: Shared themes amid diversity. Nat Rev Genet. 9:831–842. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cameron KS, Buchner V and Tchounwou PB: Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: A literature review. Rev Environ Health. 26:81–92. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Chen H, Huang X and Costa M: Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1alpha) and HIF-regulated genes. Toxicol Appl Pharmacol. 213:245–255. 2006. View Article : Google Scholar : PubMed/NCBI | |
Davidson TL, Chen H, Di Toro DM, D'Angelo G and Costa M: Soluble nickel inhibits HIF-prolyl-hydroxylases creating persistent hypoxic signaling in A549 cells. Mol Carcinog. 45:479–489. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH, Bae SC and Lee YM: Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 287:14760–14771. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G and Franceschi RT: Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem. 112:3582–3593. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Chen Y, Qian N, Sima G, Zhang J, Guo Z and Wang C: SATB2 knockdown decreases hypoxia-induced autophagy and stemness in oral squamous cell carcinoma. Oncol Lett. 20:794–802. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ali T, Mushtaq I, Maryam S, Farhan A, Saba K, Jan MI, Sultan A, Anees M, Duygu B, Hamera S, et al: Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 661:56–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
Clemens F, Verma R, Ramnath J and Landolph JR: Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines. Toxicol Appl Pharmacol. 206:138–149. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chiocca SM, Sterner DA, Biggart NW and Murphy EC Jr: Nickel mutagenesis: Alteration of the MuSVts110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3′ splice site. Mol Carcinog. 4:61–71. 1991. View Article : Google Scholar : PubMed/NCBI | |
Zhang YJ, Chen JW, He XS, Zhang HZ, Ling YH, Wen JH, Deng WH, Li P, Yun JP, Xie D and Cai MY: SATB2 is a promising biomarker for identifying a colorectal origin for liver metastatic adenocarcinomas. EBioMedicine. 28:62–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dragomir A, de Wit M, Johansson C, Uhlen M and Ponten F: The role of SATB2 as a diagnostic marker for tumors of colorectal origin: Results of a pathology-based clinical prospective study. Am J Clin Pathol. 141:630–638. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eberhard J, Gaber A, Wangefjord S, Nodin B, Uhlen M, Ericson Lindquist K and Jirstrom K: A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br J Cancer. 106:931–938. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Shi J, Zhu S, Chen Z, Li A, Chen T, Wang HL and Liu H: Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 138:1015–1026. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moh M, Krings G, Ates D, Aysal A, Kim GE and Rabban JT: SATB2 Expression distinguishes ovarian metastases of colorectal and appendiceal origin from primary ovarian tumors of mucinous or endometrioid type. Am J Surg Pathol. 40:419–432. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Ma Y, Ochoa AC, Shankar S and Srivastava RK: Cellular transformation of human mammary epithelial cells by SATB2. Stem Cell Res. 19:139–147. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, Gorlick R, Liu C and Huang J: A RUNX2-Mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet. 12:e10058842016. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Yang F, Li Y, de Crombrugghe B, Jiao H, Xiao G and Zhang C: Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem. 287:1671–1678. 2012. View Article : Google Scholar : PubMed/NCBI | |
Efe JA and Ding S: The evolving biology of small molecules: Controlling cell fate and identity. Philos Trans R Soc Lond B Biol Sci. 366:2208–2221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma YN, Zhang HY, Fei LR, Zhang MY, Wang CC, Luo Y and Han YC: SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med. 18:37–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei MM and Zhou GB: Long non-coding RNAs and their roles in non-small-cell lung cancer. Genomics Proteomics Bioinformatics. 14:280–288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stepicheva NA and Song JL: Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev. 83:654–674. 2016. View Article : Google Scholar : PubMed/NCBI | |
Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, Fullen DR, Johnson TM, Giordano TJ, Palanisamy N and Chinnaiyan AM: Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget. 3:1011–1025. 2012. View Article : Google Scholar : PubMed/NCBI | |
Augoff K, Das M, Bialkowska K, McCue B, Plow EF and Sossey-Alaoui K: miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol Cancer Res. 9:1500–1508. 2011.PubMed/NCBI | |
Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, Matsuda Y, Sato-Otsubo A, Muto S, Utsunomiya A, et al: Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell. 21:121–135. 2012.PubMed/NCBI | |
Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 12:847–865. 2013.PubMed/NCBI | |
Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, et al: MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget. 6:8089–8102. 2015.PubMed/NCBI | |
Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM and Dryja TP: Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 48:880–888. 1991.PubMed/NCBI | |
Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT and Costa M: Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol Cell Biol. 15:2547–2557. 1995.PubMed/NCBI | |
Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD and Sakai T: CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene. 8:1063–1067. 1993.PubMed/NCBI | |
Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D and Warren ST: DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1:397–400. 1992.PubMed/NCBI | |
Greger V, Debus N, Lohmann D, Hopping W, Passarge E and Horsthemke B: Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 94:491–496. 1994.PubMed/NCBI | |
Hansen RS, Gartler SM, Scott CR, Chen SH and Laird CD: Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1:571–578. 1992.PubMed/NCBI |