1
|
Freeman M: Rhomboid proteases and their
biological functions. Annu Rev Genet. 42:191–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Adrain C and Cavadas M: The complex life
of rhomboid pseudoproteases. FEBS J. 287:4261–4283. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bergbold N and Lemberg MK: Emerging role
of rhomboid family proteins in mammalian biology and disease.
Biochim Biophys Acta. 1828:2840–2848. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yan Z, Zou H, Tian F, Grandis JR, Mixson
AJ, Lu PY and Li LY: Human rhomboid family-1 gene silencing causes
apoptosis or autophagy to epithelial cancer cells and inhibits
xenograft tumor growth. Mol Cancer Ther. 7:1355–1364. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zou H, Thomas SM, Yan Z, Grandis JR, Vogt
A and Li L: Human rhomboid family-1 gene RHBDF1 participates in
GPCR-mediated transactivation of EGFR growth signals in head and
neck squamous cancer cells. FASEB J. 23:425–432. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou Z, Liu F, Zhang ZS, Shu F, Zheng Y,
Fu L and Li LY: Human rhomboid family-1 suppresses
oxygen-independent degradation of hypoxia-inducible factor-1α in
breast cancer. Cancer Res. 74:2719–2730. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yuan H, Wei R, Xiao Y, Song Y, Wang J, Yu
H, Fang T, Xu W and Mao S: RHBDF1 regulates APC-mediated
stimulation of the epithelial-to-mesenchymal transition and
proliferation of colorectal cancer cells in part via the
Wnt/β-catenin signalling pathway. Exp Cell Res. 368:24–36. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Abba MC, Lacunza E, Nunez MI, Colussi A,
Isla-Larrain M, Segal-Eiras A, Croce MV and Aldaz CM: Rhomboid
domain containing 2 (RHBDD2): A novel cancer-related gene
over-expressed in breast cancer. Biochim Biophys Acta.
1792:988–997. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lacunza E, Canzoneri R, Rabassa ME,
Zwenger A, Segal-Eiras A, Croce MV and Abba MC: RHBDD2: A
5-fluorouracil responsive gene overexpressed in the advanced stages
of colorectal cancer. Tumour Biol. 33:2393–2399. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lacunza E, Rabassa ME, Canzoneri R,
Pellon-Maison M, Croce MV, Aldaz CM and Abba MC: Identification of
signaling pathways modulated by RHBDD2 in breast cancer cells: A
link to the unfolded protein response. Cell Stress Chaperones.
19:379–388. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ferretti VA, Canzoneri R, Barbeito CG,
Croce MV, Abba MC and Lacunza E: Spatiotemporal expression of
rhomboid domain containing 2 (Rhbdd2) during rat development. Acta
Histochem. 117:635–641. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hussain T, Lee J, Abba MC, Chen J and
Aldaz CM: Delineating WWOX protein interactome by tandem affinity
purification-mass spectrometry: Identification of top interactors
and key metabolic pathways involved. Front Oncol. 8:5912018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Aldaz CM, Ferguson BW and Abba MC: WWOX at
the crossroads of cancer, metabolic syndrome related traits and CNS
pathologies. Biochim Biophys Acta. 1846:188–200. 2014.PubMed/NCBI
|
14
|
Sudol M: Structure and function of the WW
domain. Prog Biophys Mol Biol. 65:113–132. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chan DC, Bedford MT and Leder P: Formin
binding proteins bear WWP/WW domains that bind proline-rich
peptides and functionally resemble SH3 domains. EMBO J.
15:1045–1054. 1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ludes-Meyers JH, Kil H, Bednarek AK, Drake
J, Bedford MT and Aldaz CM: WWOX binds the specific proline-rich
ligand PPXY: Identification of candidate interacting proteins.
Oncogene. 23:5049–5055. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ferguson BW, Gao X, Zelazowski MJ, Lee J,
Jeter CR, Abba MC and Aldaz CM: The cancer gene WWOX behaves as an
inhibitor of SMAD3 transcriptional activity via direct binding. BMC
Cancer. 13:5932013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ferguson BW, Gao X, Kil H, Lee J,
Benavides F, Abba MC and Aldaz CM: Conditional Wwox deletion in
mouse mammary gland by means of two cre recombinase approaches.
PLoS One. 7:e366182012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Abdeen SK, Salah Z, Khawaled S and Aqeilan
RI: Characterization of WWOX inactivation in murine mammary gland
development. J Cell Physiol. 228:1391–1396. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bednarek AK, Keck-Waggoner CL, Daniel RL,
Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX,
the FRA16D gene, behaves as a suppressor of tumor growth. Cancer
Res. 61:8068–8073. 2001.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Palma S, Raffa CI, Garcia-Fabiani MB,
Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao
E, Cuartero V, Abba MC and Lacunza E: RHBDD2 overexpression
promotes a chemoresistant and invasive phenotype to rectal cancer
tumors via modulating UPR and focal adhesion genes. Biochim Biophys
Acta. 1866:1658102020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bednarek AK, Laflin KJ, Daniel RL, Liao Q,
Hawkins KA and Aldaz CM: WWOX, a novel WW domain-containing protein
mapping to human chromosome 16q23.3–24.1, a region frequently
affected in breast cancer. Cancer Res. 60:2140–2145.
2000.PubMed/NCBI
|
24
|
Chammas R, Taverna D, Cella N, Santos C
and Hynes NE: Laminin and tenascin assembly and expression regulate
HC11 mouse mammary cell differentiation. J Cell Sci. 107:1031–1040.
1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shiu RP and Paterson JA: Alteration of
cell shape, adhesion, and lipid accumulation in human breast cancer
cells (T-47D) by human prolactin and growth hormone. Cancer Res.
44:1178–1186. 1984.PubMed/NCBI
|
26
|
Chambon M, Rochefort H, Vial HJ and
Chalbos D: Progestins and androgens stimulate lipid accumulation in
T47D breast cancer cells via their own receptors. J Steroid
Biochem. 33:915–922. 1989. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ronen D, Altstock RT, Firon M, Mittelman
L, Sobe T, Resau JH, Vande Woude GF and Tsarfaty I: Met-HGF/SF
mediates growth arrest and differentiation in T47D breast cancer
cells. Cell Growth Differ. 10:131–140. 1999.PubMed/NCBI
|
28
|
Canzoneri R, Rabassa ME, Gurruchaga A,
Ferretti V, Palma S, Isla-Larrain M, Croce MV, Lacunza E and Abba
MC: Alternative splicing variant of RHBDD2 is associated with cell
stress response and breast cancer progression. Oncol Rep.
40:909–915. 2018.PubMed/NCBI
|
29
|
Bonin F, Taouis K, Azorin P, Petitalot A,
Tariq Z, Nola S, Bouteille N, Tury S, Vacher S, Bièche I, et al:
VOPP1 promotes breast tumorigenesis by interacting with the tumor
suppressor WWOX. BMC Biol. 16:1092018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fontes-Sousa M, Amorim M, Salta S, Palma
De Sousa S, Henrique R and Jerónimo C: Predicting resistance to
endocrine therapy in breast cancer: It's time for epigenetic
biomarkers (Review). Oncol Rep. 41:1431–1438. 2019.PubMed/NCBI
|
31
|
Nunez MI, Ludes-Meyers J, Abba MC, Kil H,
Abbey NW, Page RE, Sahin A, Klein-Szanto AJ and Aldaz CM: Frequent
loss of WWOX expression in breast cancer: Correlation with estrogen
receptor status. Breast Cancer Res Treat. 89:99–105. 2005.
View Article : Google Scholar : PubMed/NCBI
|