Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review)
- Authors:
- Zhengyi Wang
- Xiaoying Wu
-
Affiliations: Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China, Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China - Published online on: July 7, 2021 https://doi.org/10.3892/or.2021.8135
- Article Number: 184
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, Cagan A, Murai K, Mahbubani K, Stratton MR, et al: Somatic mutant clones colonize the human esophagus with age. Science. 362:911–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama A, Kakiuchi N, Yoshizato T, Nannya Y, Suzuki H, Takeuchi Y, Shiozawa Y, Sato Y, Aoki K, Kim SK, et al: Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 565:312–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goerttler K, Loehrke H, Schweizer J and Hesse B: Two-stage skin carcinogenesis by systemic initiation of pregnant mice with 7,12-dimethylbenz(a)anthracene during gestation days 6–20 and postnatal promotion of the F 1-generation with the phorbol ester 12-tetradecanoylphorbol-13-acetate. J Cancer Res Clin Oncol. 98:267–275. 1980. View Article : Google Scholar : PubMed/NCBI | |
Goerttler K, Loehrke H, Hesse B, Milz A and Schweizer J: Diaplacental initiation of NMRI mice with 7,12-dimethylbenz[a]anthracene during gestation days 6–20 and postnatal treatment of the F1-generation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate: Tumor incidence in organs other than the skin. Carcinogenesis. 2:1087–1094. 1981. View Article : Google Scholar : PubMed/NCBI | |
Fairall L, Chapman L, Moss H, de Lange T and Rhodes D: Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol Cell. 8:351–361. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mondello C, Smirnova A and Giulotto E: Gene amplification, radiation sensitivity and DNA double-strand breaks. Mutat Res. 704:29–37. 2010. View Article : Google Scholar : PubMed/NCBI | |
El Maï M, Wagner KD, Michiels JF, Ambrosetti D, Borderie A, Destree S, Renault V, Djerbi N, Giraud-Panis MJ, Gilson E and Wagner N: The telomeric protein TRF2 regulates angiogenesis by binding and activating the PDGFRβ promoter. Cell Rep. 9:1047–1060. 2014. View Article : Google Scholar | |
Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L, et al: TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol. 15:818–828. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Steensel B, Smogorzewska A and de Lange T: TRF2 protects human telomeres from end-to-end fusions. Cell. 92:401–413. 1998. View Article : Google Scholar : PubMed/NCBI | |
de Lange T: Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 19:2100–2110. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smith EM, Pendlebury DF and Nandakumar J: Structural biology of telomeres and telomerase. Cell Mol Life Sci. 77:61–79. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Norseen J, Wiedmer A, Riethman H and Lieberman PM: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell. 35:403–413. 2009. View Article : Google Scholar : PubMed/NCBI | |
Necasová I, Janoušková E, Klumpler T and Hofr C: Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 45:12170–12180. 2017. View Article : Google Scholar | |
O'Connor MS, Safari A, Xin H, Liu D and Songyang Z: A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA. 103:11874–11879. 2006. View Article : Google Scholar | |
Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O'Connor MS and Songyang Z: TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature. 445:559–562. 2007. View Article : Google Scholar : PubMed/NCBI | |
van Overbeek M and de Lange T: Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol. 16:1295–1302. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ and Gilson E: The Apollo 5′exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol. 16:1303–1310. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Lee OH, Xin H, Chen LY, Qin J, Chae HK, Lin SY, Safari A, Liu D and Songyang Z: TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat Struct Mol Biol. 16:372–379. 2009. View Article : Google Scholar : PubMed/NCBI | |
Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, Lototska L, Kaur P, Bauwens S, Djerbi N, Latrick CM, Fraisier V, Pei B, et al: TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell. 61:274–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giraud-Panis MJ, Pisano S, Benarroch-Popivker D, Pei B, Le Du MH and Gilson E: One identity or more for telomeres? Front Oncol. 3:482013. View Article : Google Scholar : PubMed/NCBI | |
Broccoli D, Smogorzewska A, Chong L and de Lange T: Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 17:231–235. 1997. View Article : Google Scholar : PubMed/NCBI | |
Baker AM, Fu Q, Hayward W, Lindsay SM and Fletcher TM: The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Res. 37:5019–5031. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T and Gilson E: Telomeric localization of TRF2, a novel human telobox protein. Nat Genet. 17:236–239. 1997. View Article : Google Scholar : PubMed/NCBI | |
Denchi EL and de Lange T: Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 448:1068–1071. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gilson E and Géli V: How telomeres are replicated. Nat Rev Mol Cell Biol. 8:825–838. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, et al: TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell. 142:230–242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Greider CW: Telomeres do D-loop-T-loop. Cell. 97:419–422. 1999. View Article : Google Scholar : PubMed/NCBI | |
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H and de Lange T: Mammalian telomeres end in a large duplex loop. Cell. 97:503–514. 1999. View Article : Google Scholar : PubMed/NCBI | |
Timashev LA and De Lange T: Characterization of t-loop formation by TRF2. Nucleus. 11:164–177. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feuerhahn S, Chen LY, Luke B and Porro A: No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci. 40:275–285. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schmutz I, Timashev L, Xie W, Patel DJ and de Lange T: TRF2 binds branched DNA to safeguard telomere integrity. Nat Struct Mol Biol. 24:734–742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, Zheng XF, Flynn HR, Snijders AP, Chowdhury D, et al: CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 575:523–527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sarek G, Vannier JB, Panier S, Petrini JHJ and Boulton SJ: TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding. Mol Cell. 61:788–789. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bower BD and Griffith JD: TRF1 and TRF2 differentially modulate Rad51-mediated telomeric and nontelomeric displacement loop formation in vitro. Biochemistry. 53:5485–5495. 2014. View Article : Google Scholar : PubMed/NCBI | |
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar | |
Takai H, Smogorzewska A and de Lange T: DNA damage foci at dysfunctional telomeres. Curr Biol. 13:1549–1556. 2003. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frescas D and de Lange T: TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol Cell Biol. 34:1349–1362. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takai KK, Kibe T, Donigian JR, Frescas D and de Lange T: Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell. 67:1622017. View Article : Google Scholar : PubMed/NCBI | |
Fuchs E: The tortoise and the hair: Slow-cycling cells in the stem cell race. Cell. 137:811–819. 2009. View Article : Google Scholar : PubMed/NCBI | |
Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID and Bohr VA: Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem. 277:41110–41119. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, Ungrin M and Meyn MS: The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet. 11:3135–3144. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rothkamm K, Krüger I, Thompson LH and Löbrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 23:5706–5715. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mladenov E and Iliakis G: Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat Res. 711:61–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ribes-Zamora A, Indiviglio SM, Mihalek I, Williams CL and Bertuch AA: TRF2 interaction with Ku heterotetramerization interface gives insight into c-NHEJ prevention at human telomeres. Cell Rep. 5:194–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dimitrova N, Chen YC, Spector DL and de Lange T: 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 456:524–528. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, Bianchi A, Zimmermann M, Durocher D and de Lange T: 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 560:112–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Timashev LA, Babcock H, Zhuang X and de Lange T: The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 31:578–589. 2017. View Article : Google Scholar : PubMed/NCBI | |
Blasco MA: Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sfeir A and de Lange T: Removal of shelterin reveals the telomere end-protection problem. Science. 336:593–597. 2012. View Article : Google Scholar : PubMed/NCBI | |
Celli GB, Denchi EL and de Lange T: Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol. 8:885–890. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kibe T, Osawa GA, Keegan CE and de Lange T: Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol Cell Biol. 30:1059–1066. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL and Bohr VA: WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun. 7:137852016. View Article : Google Scholar : PubMed/NCBI | |
Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E and Teixeira MT: Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res. 42:3648–3665. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, et al: Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 126:49–62. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rai R, Chen Y, Lei M and Chang S: TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun. 7:108812016. View Article : Google Scholar : PubMed/NCBI | |
González-Prieto R, Cuijpers SA, Luijsterburg MS, van Attikum H and Vertegaal AC: SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites. EMBO Rep. 16:512–519. 2015. View Article : Google Scholar | |
Capper R, Britt-Compton B, Tankimanova M, Rowson J, Letsolo B, Man S, Haughton M and Baird DM: The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21:2495–2508. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karlseder J, Smogorzewska A and de Lange T: Senescence induced by altered telomere state, not telomere loss. Science. 295:2446–2449. 2002. View Article : Google Scholar : PubMed/NCBI | |
Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G and de Lange T: Control of human telomere length by TRF1 and TRF2. Mol Cell Biol. 20:1659–1668. 2000. View Article : Google Scholar : PubMed/NCBI | |
Muñoz P, Blanco R and Blasco MA: Role of the TRF2 telomeric protein in cancer and ageing. Cell Cycle. 5:718–721. 2006. View Article : Google Scholar | |
Saint-Léger A, Koelblen M, Civitelli L, Bah A, Djerbi N, Giraud-Panis MJ, Londoño-Vallejo A, Ascenzioni F and Gilson E: The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres. Cell Cycle. 13:2469–2474. 2014. View Article : Google Scholar | |
Wilson JS, Tejera AM, Castor D, Toth R, Blasco MA and Rouse J: Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Rep. 4:853–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zacal NJ, Rainbow AJ and Zhu XD: XPF with mutations in its conserved nuclease domain is defective in DNA repair but functions in TRF2-mediated telomere shortening. DNA Repair (Amst). 6:157–166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Mitchell TR and Zhu XD: Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms. Mech Ageing Dev. 129:602–610. 2008. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Rubio MA, Campisi J and Lupu R: Heregulin, a new regulator of telomere length in human cells. Oncotarget. 6:39422–39436. 2015. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Benboudjema L, Vellon L, Rubio MA, Espinoza I, Campisi J and Lupu R: Heregulin, a new interactor of the telosome/shelterin complex in human telomeres. Oncotarget. 6:39408–39421. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baur JA, Zou Y, Shay JW and Wright WE: Telomere position effect in human cells. Science. 292:2075–2077. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, Lai TP, Zhang N, Wright WE and Shay JW: Regulation of the human telomerase gene TERT by telomere position effect-over long distances (TPE-OLD): Implications for aging and cancer. PLoS Biol. 14:e20000162016. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D and Chowdhury S: Telomere repeat-binding factor 2 binds extensively to extra-telomeric G-quadruplexes and regulates the epigenetic status of several gene promoters. J Biol Chem. 294:17709–17722. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bradshaw PS, Stavropoulos DJ and Meyn MS: Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet. 37:193–197. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hussain T, Saha D, Purohit G, Kar A, Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, et al: Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci Rep. 7:115412017. View Article : Google Scholar : PubMed/NCBI | |
Purohit G, Mukherjee AK, Sharma S and Chowdhury S: Extratelomeric binding of the telomere binding protein TRF2 at the PCGF3 promoter is G-Quadruplex Motif-dependent. Biochemistry. 57:2317–2324. 2018. View Article : Google Scholar : PubMed/NCBI | |
Williamson JR, Raghuraman MK and Cech TR: Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell. 59:871–880. 1989. View Article : Google Scholar : PubMed/NCBI | |
Phan AT: Human telomeric G-quadruplex: Structures of DNA and RNA sequences. FEBS J. 277:1107–1117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Muniyappa K and Kironmai KM: Telomere structure, replication and length maintenance. Crit Rev Biochem Mol Biol. 33:297–336. 1998. View Article : Google Scholar : PubMed/NCBI | |
Luu KN, Phan AT, Kuryavyi V, Lacroix L and Patel DJ: Structure of the human telomere in K+ solution: An intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc. 128:9963–9970. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brázda V, Hároníková L, Liao JC and Fojta M: DNA and RNA quadruplex-binding proteins. Int J Mol Sci. 15:17493–17517. 2014. View Article : Google Scholar | |
Pedroso IM, Hayward W and Fletcher TM: The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures. Nucleic Acids Res. 37:1541–1554. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK and Chowdhury S: Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res. 16:644–655. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sengupta A, Roy SS and Chowdhury S: Non-duplex G-Quadruplex DNA Structure: A developing story from predicted sequences to DNA structure-dependent epigenetics and beyond. Acc Chem Res. 54:46–56. 2021. View Article : Google Scholar : PubMed/NCBI | |
Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, et al: Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 5:1515–1525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heidenreich B, Nagore E, Rachakonda PS, Garcia-Casado Z, Requena C, Traves V, Becker J, Soufir N, Hemminki K and Kumar R: Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma. Nat Commun. 5:34012014. View Article : Google Scholar : PubMed/NCBI | |
Pinyol R, Tovar V and Llovet JM: TERT promoter mutations: Gatekeeper and driver of hepatocellular carcinoma. J Hepatol. 61:685–687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rachakonda PS, Hosen I, de Verdier PJ, Fallah M, Heidenreich B, Ryk C, Wiklund NP, Steineck G, Schadendorf D, Hemminki K and Kumar R: TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 110:17426–17431. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A and Chowdhury S: Metastases suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res. 37:172–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
Paramasivam M, Membrino A, Cogoi S, Fukuda H, Nakagama H and Xodo LE: Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: Implications for transcription. Nucleic Acids Res. 37:2841–2853. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cogoi S, Paramasivam M, Membrino A, Yokoyama KK and Xodo LE: The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem. 285:22003–22016. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yadav VK, Abraham JK, Mani P, Kulshrestha R and Chowdhury S: QuadBase: Genome-wide database of G4 DNA-occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 36:D381–D385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee AK, Sharma S, Sengupta S, Saha D, Kumar P, Hussain T, Srivastava V, Roy SD, Shay JW and Chowdhury S: Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet. 14:e10077822018. View Article : Google Scholar : PubMed/NCBI | |
Shay JW and Wright WE: Telomeres and telomerase: Three decades of progress. Nat Rev Genet. 20:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H and Lengauer C: CIN-ful cancers. Cancer Chemother Pharmacol. 54 (Suppl 1):S65–S68. 2004.PubMed/NCBI | |
Tlsty TD: Genomic instability and its role in neoplasia. Curr Top Microbiol Immunol. 221:37–46. 1997.PubMed/NCBI | |
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
Palm W and de Lange T: How shelterin protects mammalian telomeres. Annu Rev Genet. 42:301–334. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wright WE, Pereira-Smith OM and Shay JW: Reversible cellular senescence: Implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol. 9:3088–3092. 1989. View Article : Google Scholar : PubMed/NCBI | |
O'Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L and DePinho RA: Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell. 2:149–155. 2002. View Article : Google Scholar | |
Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, et al: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 14:355–365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feldser DM and Greider CW: Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell. 11:461–469. 2007. View Article : Google Scholar : PubMed/NCBI | |
Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB and Bacchetti S: Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921–1929. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hayashi MT, Cesare AJ, Rivera T and Karlseder J: Cell death during crisis is mediated by mitotic telomere deprotection. Nature. 522:492–496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sabatier L, Ricoul M, Pottier G and Murnane JP: The loss of a single telomere can result in instability of multiple chromosomes in a human tumor cell line. Mol Cancer Res. 3:139–150. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bailey SM and Murnane JP: Telomeres, chromosome instability and cancer. Nucleic Acids Res. 34:2408–2417. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martínez P and Blasco MA: Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 216:875–887. 2017. View Article : Google Scholar | |
Murnane JP and Sabatier L: Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays. 26:1164–1174. 2004. View Article : Google Scholar : PubMed/NCBI | |
Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH and Gilson E: Structural identity of telomeric complexes. FEBS Lett. 584:3785–3799. 2010. View Article : Google Scholar : PubMed/NCBI | |
Salhab M, Jiang WG, Newbold RF and Mokbel K: The expression of gene transcripts of telomere-associated genes in human breast cancer: Correlation with clinico-pathological parameters and clinical outcome. Breast Cancer Res Treat. 109:35–46. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pascua I, Fernández-Marcelo T, Sánchez-Pernaute A, de Juan C, Head J, Torres-García AJ and Iniesta P: Prognostic value of telomere function in gastric cancers with and without microsatellite instability. Eur J Gastroenterol Hepatol. 27:162–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamada K, Yagihashi A, Yamada M, Asanuma K, Moriai R, Kobayashi D, Tsuji N and Watanabe N: Decreased gene expression for telomeric-repeat binding factors and TIN2 in malignant hematopoietic cells. Anticancer Res. 22:1315–1320. 2002.PubMed/NCBI | |
Su CH, Cheng C, Tzeng TY, Lin IH and Hsu MT: An H2A Histone Isotype, H2ac, associates with telomere and maintains telomere integrity. PLoS One. 11:e01563782016. View Article : Google Scholar : PubMed/NCBI | |
Bojovic B, Ho HY, Wu J and Crowe DL: Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice. Oncogene. 32:5156–5166. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lagunas AM, Wu J and Crowe DL: Telomere DNA damage signaling regulates cancer stem cell evolution, epithelial mesenchymal transition, and metastasis. Oncotarget. 8:80139–80155. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rossi DJ, Jamieson CH and Weissman IL: Stems cells and the pathways to aging and cancer. Cell. 132:681–696. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Härle-Bachor C and Boukamp P: Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA. 93:6476–6481. 1996. View Article : Google Scholar | |
González-Suárez E, Samper E, Ramírez A, Flores JM, Martín-Caballero J, Jorcano JL and Blasco MA: Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 20:2619–2630. 2001. View Article : Google Scholar | |
Blanco R, Muñoz P, Flores JM, Klatt P and Blasco MA: Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 21:206–220. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matsutani N, Yokozaki H and Tahara E, Tahara H, Kuniyasu H, Haruma K, Chayama K, Yasui W and Tahara E: Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int J Oncol. 19:507–512. 2001.PubMed/NCBI | |
Oh BK, Kim YJ, Park C and Park YN: Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am J Pathol. 166:73–80. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu L and Blackburn EH: Human cancer cells harbor T-stumps, a distinct class of extremely short telomeres. Mol Cell. 28:315–327. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muñoz P, Blanco R, Flores JM and Blasco MA: XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet. 37:1063–1071. 2005. View Article : Google Scholar | |
Nera B, Huang HS, Lai T and Xu L: Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun. 6:101322015. View Article : Google Scholar : PubMed/NCBI | |
Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB and Chang S: The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J. 29:2598–2610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Shen R, Wang Q, Gao Y, Qi X, Jiang H, Yao J, Lin X, Wu Y and Wang L: Sp1 upregulates expression of TRF2 and TRF2 inhibition reduces tumorigenesis in human colorectal carcinoma cells. Cancer Biol Ther. 8:2166–2174. 2009. View Article : Google Scholar : PubMed/NCBI | |
Raynaud CM, Jang SJ, Nuciforo P, Lantuejoul S, Brambilla E, Mounier N, Olaussen KA, André F, Morat L, Sabatier L and Soria JC: Telomere shortening is correlated with the DNA damage response and telomeric protein down-regulation in colorectal preneoplastic lesions. Ann Oncol. 19:1875–1881. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brummelkamp TR, Bernards R and Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science. 296:550–553. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gartel AL, Goufman E, Najmabadi F and Tyner AL: Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene. 19:5182–5188. 2000. View Article : Google Scholar : PubMed/NCBI | |
Takami Y, Russell MB, Gao C, Mi Z, Guo H, Mantyh CR and Kuo PC: Sp1 regulates osteopontin expression in SW480 human colon adenocarcinoma cells. Surgery. 142:163–169. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu GH, Lenzi M and Schwartz EL: The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene. 21:8477–8485. 2002. View Article : Google Scholar : PubMed/NCBI | |
Diala I, Wagner N, Magdinier F, Shkreli M, Sirakov M, Bauwens S, Schluth-Bolard C, Simonet T, Renault VM, Ye J, et al: Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep. 14:356–363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Ge Y, Li X, Yang Y, Zhou H, Lin K, Zhang Z and Zhao Y: BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1. PLoS Genet. 16:e10087992020. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Wang L, Chen X, Sun P and Wu Y: Upregulation and CpG island hypomethylation of the TRF2 gene in human gastric cancer. Dig Dis Sci. 55:997–1003. 2010. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Feng X, Wang H, Xu W, Zhao Y, Ma W, Jiang S, Liu D, Huang J and Songyang Z: Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression. Aging Cell. 14:391–399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, et al: miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 74:4145–4156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dinami R, Porru M, Amoreo CA, Sperduti I, Mottolese M, Buglioni S, Marinelli D, Maugeri-Saccà M, Sacconi A, Blandino G, et al: TRF2 and VEGF-A: An unknown relationship with prognostic impact on survival of colorectal cancer patients. J Exp Clin Cancer Res. 39:1112020. View Article : Google Scholar : PubMed/NCBI | |
Zizza P, Dinami R, Porru M, Cingolani C, Salvati E, Rizzo A, D'Angelo C, Petti E, Amoreo CA, Mottolese M, et al: TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Res. 47:3365–3382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gavert N and Ben-Ze'ev A: Beta-Catenin signaling in biological control and cancer. J Cell Biochem. 102:820–828. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dhillon AS, Hagan S, Rath O and Kolch W: MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jones SM and Kazlauskas A: Growth factor-dependent signaling and cell cycle progression. FEBS Lett. 490:110–116. 2001. View Article : Google Scholar : PubMed/NCBI | |
Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J and Ahn NG: Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol. 22:7226–7241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nijjar T, Bassett E, Garbe J, Takenaka Y, Stampfer MR, Gilley D and Yaswen P: Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells. Oncogene. 24:3369–3376. 2005. View Article : Google Scholar : PubMed/NCBI | |
Picco V, Coste I, Giraud-Panis MJ, Renno T, Gilson E and Pagès G: ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Oncotarget. 7:46615–46627. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT and Gupta S: Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 6:31216–31232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wong VK, Jiang ZH, Jiang SP, Liu Y, Wang TY, Yao XJ, Su XH, Yan FG, Liu J, et al: Mutation of cysteine 46 in IKK-beta increases inflammatory responses. Oncotarget. 6:31805–31819. 2015. View Article : Google Scholar : PubMed/NCBI | |
An J, Wu M, Xin X, Lin Z, Li X, Zheng Q, Gui X, Li T, Pu H, Li H and Lu D: Inflammatory related gene IKKα, IKKβ, IKKγ cooperates to determine liver cancer stem cells progression by altering telomere via heterochromatin protein 1-HOTAIR axis. Oncotarget. 7:50131–50149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baskar R, Dai J, Wenlong N, Yeo R and Yeoh KW: Biological response of cancer cells to radiation treatment. Front Mol Biosci. 1:242014. View Article : Google Scholar : PubMed/NCBI | |
Saha A, Shree Padhi S, Roy S and Banerjee B: HCT116 colonospheres shows elevated expression of hTERT and β-catenin protein-a short report. J Stem Cells. 9:243–251. 2014.PubMed/NCBI | |
Saha A, Roy S, Kar M, Roy S, Thakur S, Padhi S, Akhter Y and Banerjee B: Role of telomeric TRF2 in orosphere formation and CSC phenotype maintenance through efficient DNA repair pathway and its correlation with recurrence in OSCC. Stem Cell Rev Rep. 14:871–887. 2018. View Article : Google Scholar : PubMed/NCBI | |
Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, Nováková M and Hofr C: Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 43:2691–2700. 2015. View Article : Google Scholar | |
Anuja K, Chowdhury AR, Saha A, Roy S, Rath AK, Kar M and Banerjee B: Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int J Radiat Biol. 95:667–679. 2019. View Article : Google Scholar : PubMed/NCBI | |
Osterwald S, Deeg KI, Chung I, Parisotto D, Wörz S, Rohr K, Erfle H and Rippe K: PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J Cell Sci. 128:1887–1900. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM and Mattson MP: Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol. 18:1489–1494. 2008. View Article : Google Scholar : PubMed/NCBI | |
Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M and Stupp R: Current concepts and management of glioblastoma. Ann Neurol. 70:9–21. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Lathia JD, Zhang P, Flavahan W, Rich JN and Mattson MP: Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia. 62:1687–1698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Simonet T, Zaragosi LE, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, et al: The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res. 21:1028–1038. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cherfils-Vicini J, Iltis C, Cervera L, Pisano S, Croce O, Sadouni N, Győrffy B, Collet R, Renault VM, Rey-Millet M, et al: Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J. 38:e1000122019. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T: p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 283:1321–1325. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pal D, Sharma U, Singh SK, Kakkar N and Prasad R: Over-expression of telomere binding factors (TRF1 & TRF2) in renal cell carcinoma and their inhibition by using SiRNA induce apoptosis, reduce cell proliferation and migration in vitro. PLoS One. 10:e01156512015. View Article : Google Scholar : PubMed/NCBI | |
Bidzinska J, Baginski M and Skladanowski A: Novel anticancer strategy aimed at targeting shelterin complexes by the induction of structural changes in telomeric DNA: Hitting two birds with one stone. Curr Cancer Drug Targets. 14:201–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Horikawa I, Fujita K and Harris CC: p53 governs telomere regulation feedback too, via TRF2. Aging (Albany NY). 3:26–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li Z, Yang L, Lei H, Yu H, Liao Z, Zhou F, Xie C and Zhou Y: Knockdown of telomeric repeat binding factor 2 enhances tumor radiosensitivity regardless of telomerase status. J Cancer Res Clin Oncol. 141:1545–1552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cabuy E, Newton C, Joksic G, Woodbine L, Koller B, Jeggo PA and Slijepcevic P: Accelerated telomere shortening and telomere abnormalities in radiosensitive cell lines. Radiat Res. 164:53–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhong YH, Liao ZK, Zhou FX, Xie CH, Xiao CY, Pan DF, Luo ZG, Liu SQ and Zhou YF: Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background. Biochem Biophys Res Commun. 367:84–89. 2008. View Article : Google Scholar : PubMed/NCBI | |
Orun O, Tiber PM and Serakinci N: Partial knockdown of TRF2 increase radiosensitivity of human mesenchymal stem cells. Int J Biol Macromol. 90:53–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ning HB, Li JC, Liu ZG and Fan DM: DNA damage increases telomerase activity and mRNA expression of telomeric repeat binding factor 2 in gastric cancer cells. Available in: www.cnki.net. World Chin J Digest. 14:942–946. 2006. View Article : Google Scholar | |
Ning HB, Wang YH, Zhang LF, et al: Reversal of multidrug resistance in gastric cancer cells by telomeric repeat binding factor 2 small interfering RNA. Available in: www.cnki.net. Chin J Diges. 31:481–483. 2011. | |
Benhamou Y, Picco V, Raybaud H, Sudaka A, Chamorey E, Brolih S, Monteverde M, Merlano M, Lo Nigro C, Ambrosetti D and Pagès G: Telomeric repeat-binding factor 2: A marker for survival and anti-EGFR efficacy in oral carcinoma. Oncotarget. 7:44236–44251. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roy S, Roy S, Kar M, Thakur S, Akhter Y, Kumar A, Delogu F, Padhi S, Saha A and Banerjee B: p38 MAPK pathway and its interaction with TRF2 in cisplatin induced chemotherapeutic response in head and neck cancer. Oncogenesis. 7:532018. View Article : Google Scholar : PubMed/NCBI | |
Apetoh L, Végran F, Ladoire S and Ghiringhelli F: Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med. 11:365–372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, Végran F, Boireau W, Simon B, Ryffel B, Connat JL, et al: Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 19:57–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR and Umansky V: Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol. 190:2464–2471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cao J, Zhu JY, Qiu J, Zhang Y, Shu B, Ou TM, Tan JH, Gu LQ, Huang ZS, et al: Curcusone C induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Proteins Proteom. 1865:1372–1382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Zhang W, Liu J, Ni W, Xu W, Jin J and Qian W: Telomere attrition and chromosome instability via downregulation of TRF2 contributes to arsenic trioxide-induced apoptosis of human T-Cell leukemia cell line molt-4 cells. Cancer Biol Ther. 6:1186–1192. 2007. View Article : Google Scholar : PubMed/NCBI |