1
|
Abe I and Lam AK: Anaplastic thyroid
carcinoma: Updates on WHO classification, clinicopathological
features and staging. Histol Histopathol. 36:239–248.
2021.PubMed/NCBI
|
2
|
Lim H, Devesa SS, Sosa JA, Check D and
Kitahara CM: Trends in thyroid cancer incidence and mortality in
the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Amin MB, Edge SB, Greene FL, Byrd DR,
Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess K,
Sullivan DC, et al: Organization of the AJCC cancer staging manual.
AJCC Cancer Staging Manual. 31–37. 2017. View Article : Google Scholar
|
4
|
Nylén C, Mechera R, Maréchal-Ross I, Tsang
V, Chou A, Gill AJ, Clifton-Bligh RJ, Robinson BG, Sywak MS, Sidhu
SB and Glover AR: Molecular markers guiding thyroid cancer
management. Cancers (Basel). 12:21642020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li Z, Zhang Y, Wang R, Zou K and Zou L:
Genetic alterations in anaplastic thyroid carcinoma and targeted
therapies. Exp Ther Med. 18:2369–2377. 2019.PubMed/NCBI
|
6
|
Goutsouliak V and Hay JH: Anaplastic
thyroid cancer in British Columbia 1985–1999: A population-based
study. Clin Oncol (R Coll Radiol). 17:75–78. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pezzi TA, Mohamed ASR, Sheu T, Blanchard
P, Sandulache VC, Lai SY, Cabanillas ME, Williams MD, Pezzi CM, Lu
C, et al: Radiation therapy dose is associated with improved
survival for unresected anaplastic thyroid carcinoma: Outcomes from
the National cancer data base. Cancer. 123:1653–1661. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Prasongsook N, Kumar A, Chintakuntlawar
AV, Foote RL, Kasperbauer J, Molina J, Garces Y, Ma D, Wittich MAN,
Rubin J, et al: Survival in response to multimodal therapy in
anaplastic thyroid cancer. J Clin Endocrinol Metab. 102:4506–4514.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim JH and Leeper RD: Treatment of locally
advanced thyroid carcinoma with combination doxorubicin and
radiation therapy. Cancer. 60:2372–2375. 1987. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hosseini A and Ghorbani A: Cancer therapy
with phytochemicals: Evidence from clinical studies. Avicenna J
Phytomedicine. 5:84–97. 2015.PubMed/NCBI
|
11
|
Shin HJ, Hwang KA and Choi KC: Antitumor
effect of various phytochemicals on diverse types of thyroid
cancers. Nutrients. 11:1252019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hosseinimehr SJ and Hosseini SA:
Resveratrol sensitizes selectively thyroid cancer cell to
131-iodine toxicity. J Toxicol. 2014:8395972014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu X, Qin J and Liu W: Curcumin inhibits
the invasion of thyroid cancer cells via down-regulation of
PI3K/Akt signaling pathway. Gene. 546:226–232. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang L, Cheng X, Gao Y, Zhang C, Bao J,
Guan H, Yu H, Lu R, Xu Q and Sun Y: Curcumin inhibits metastasis in
human papillary thyroid carcinoma BCPAP cells via down-regulation
of the TGF-β/Smad2/3 signaling pathway. Exp Cell Res. 341:157–165.
2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen X, Yu J, Zhong B, Lu J, Lu JJ, Li S
and Lu Y: Pharmacological activities of dihydrotanshinone I, a
natural product from Salvia miltiorrhiza Bunge. Pharmacol
Res. 145:1042542019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang L, Yeung JH, Hu T, Lee WY, Lu L,
Zhang L, Shen J, Chan RL, Wu WK and Cho CH: Dihydrotanshinone
induces p53-independent but ROS-dependent apoptosis in colon cancer
cells. Life Sci. 93:344–351. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsai SL, Suk FM, Wang CI, Liu DZ, Hou WC,
Lin PJ, Hung LF and Liang YC: Anti-tumor potential of
15,16-dihydrotanshinone I against breast adenocarcinoma through
inducing G1 arrest and apoptosis. Biochem Pharmacol. 74:1575–1586.
2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cheng R, Chen J, Wang Y, Ge Y, Huang Z and
Zhang G: Dihydrotanshinone induces apoptosis of SGC7901 and MGC803
cells via activation of JNK and p38 signalling pathways. Pharm
Biol. 54:3019–3025. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen X, Li Q, He Y, Du H, Zhan Z, Zhao H,
Shi J, Ye Q and Hu J: 15,16-dihydrotanshinone I induces apoptosis
and inhibits the proliferation, migration of human osteosarcoma
cell line 143b in vitro. Anticancer Agents Med Chem. 17:1234–1242.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu JJ, Wu HH, Chen TH, Leung W and Liang
YC: 15,16-Dihydrotanshinone I from the functional food Salvia
miltiorrhiza exhibits anticancer activity in human HL-60
leukemia cells: In vitro and in vivo studies. Int J Mol Sci.
16:19387–19400. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang F, Ma J, Wang KS, Mi C, Lee JJ and
Jin X: Blockade of TNF-α-induced NF-κB signaling pathway and
anti-cancer therapeutic response of dihydrotanshinone I. Int
Immunopharmacol. 28:764–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee DS and Lee SH: Biological activity of
dihydrotanshinone I: Effect on apoptosis. J Biosci Bioeng.
89:292–293. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ye Y, Xu W, Zhong W, Li Y and Wang C:
Combination treatment with dihydrotanshinone I and irradiation
enhances apoptotic effects in human cervical cancer by HPV E6
down-regulation and caspases activation. Mol Cell Biochem.
363:191–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lal P, Cerofolini L, D'Agostino VG, Zucal
C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma
V, et al: Regulation of HuR structure and function by
dihydrotanshinone-I. Nucleic Acids Res. 45:9514–9527. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Baldan F, Mio C, Allegri L, Conzatti K,
Toffoletto B, Puppin C, Radovic S, Vascotto C, Russo D, Di Loreto C
and Damante G: Identification of tumorigenesis-related mRNAs
associated with RNA-binding protein HuR in thyroid cancer cells.
Oncotarget. 7:63388–63407. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Allegri L, Mio C, Russo D, Filetti S and
Baldan F: Effects of HuR downregulation on anaplastic thyroid
cancer cells. Oncol Lett. 15:575–579. 2018.PubMed/NCBI
|
27
|
Allegri L, Baldan F, Roy S, Aubé J, Russo
D, Filetti S and Damante G: The HuR CMLD-2 inhibitor exhibits
antitumor effects via MAD2 downregulation in thyroid cancer cells.
Sci Rep. 9:73742019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Skoufias DA, Andreassen PR, Lacroix FB,
Wilson L and Margolis RL: Mammalian mad2 and bub1/bubR1 recognize
distinct spindle-attachment and kinetochore-tension checkpoints.
Proc Natl Acad Sci USA. 98:4492–4497. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Heldin NE and Westermark B: The molecular
biology of the human anaplastic thyroid carcinoma cell.
Thyroidology. 3:127–131. 1991.PubMed/NCBI
|
30
|
Ito T, Seyama T, Hayashi Y, Hayashi T,
Dohi K, Mizuno T, Iwamoto K, Tsuyama N, Nakamura N and Akiyama M:
Establishment of 2 human thyroid-carcinoma cell-lines (8305c,
8505c) bearing P53 gene-mutations. Int J Oncol. 4:583–586.
1994.PubMed/NCBI
|
31
|
Landa I, Pozdeyev N, Korch C, Marlow LA,
Smallridge RC, Copland JA, Henderson YC, Lai SY, Clayman GL, Onoda
N, et al: Comprehensive genetic characterization of human thyroid
cancer cell lines: A validated panel for preclinical studies. Clin
Cancer Res. 25:3141–3151. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mio C, Lavarone E, Conzatti K, Baldan F,
Toffoletto B, Puppin C, Filetti S, Durante C, Russo D, Orlacchio A,
et al: MCM5 as a target of BET inhibitors in thyroid cancer cells.
Endocr Relat Cancer. 23:335–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Justus CR, Leffler N, Ruiz-Echevarria M
and Yang LV: In vitro cell migration and invasion assays. J Vis
Exp. 510462014.PubMed/NCBI
|
34
|
Martin M: Cutadapt removes adapter
sequences from high-throughput sequencing reads. EMBnet J.
17:10–12. 2011. View Article : Google Scholar
|
35
|
Del Fabbro C, Scalabrin S, Morgante M and
Giorgi FM: An extensive evaluation of read trimming effects on
Illumina NGS data analysis. PLoS One. 8:e850242013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pertea M, Pertea GM, Antonescu CM, Chang
TC, Mendell JT and Salzberg SL: StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat
Biotechnol. 33:290–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lombardo GE, Maggisano V, Celano M, Cosco
D, Mignogna C, Baldan F, Lepore SM, Allegri L, Moretti S, Durante
C, et al: Anti-hTERTsiRNA-Loaded nanoparticles block the growth of
anaplastic thyroid cancer xenograft. Mol Cancer Ther. 17:1187–1195.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Darzynkiewicz Z, Bruno S, Bino GD,
Gorczyca W, Hotz MA, Lassota P and Traganos F: Features of
apoptotic cells measured by flow cytometry. Cytometry. 13:795–808.
1992. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mi H, Ebert D, Muruganujan A, Mills C,
Albou LP, Mushayamaha T and Thomas PD: PANTHER version 16: A
revised family classification, tree-based classification tool,
enhancer regions and extensive API. Nucleic Acids Res.
49:D394–D403. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi
FJ, Safari-Alighiarloo N and Hedayati M: Epithelial-to-mesenchymal
transition in thyroid cancer: A comprehensive review. Endocrine.
66:435–455. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Genga KR, Filho FD, Ferreira FV, de Sousa
JC, Studart FS, Magalhães SM, Heredia FF and Pinheiro RF: Proteins
of the mitotic checkpoint and spindle are related to chromosomal
instability and unfavourable prognosis in patients with
myelodysplastic syndrome. J Clin Pathol. 68:381–387. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Yu L, Guo WC, Zhao SH, Tang J and Chen JL:
Mitotic arrest defective protein 2 expression abnormality and its
clinicopathologic significance in human osteosarcoma. APMIS.
118:222–229. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wada N, Yoshida A, Miyagi Y, Yamamoto T,
Nakayama H, Suganuma N, Matsuzu K, Masudo K, Hirakawa S, Rino Y, et
al: Overexpression of the mitotic spindle assembly checkpoint genes
hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive
nature. Anticancer Res. 28:139–144. 2008.PubMed/NCBI
|
46
|
Tanabe S, Aoyagi K, Yokozaki H and Sasaki
H: Gene expression signatures for identifying diffuse-type gastric
cancer associated with epithelial-mesenchymal transition. Int J
Oncol. 44:1955–1970. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wu H, Sun Y, Ye H, Yang S, Lee SL and de
las Morenas A: Anaplastic thyroid cancer: Outcome and the
mutation/expression profiles of potential targets. Pathol Oncol
Res. 21:695–701. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fan D, Ma J, Bell AC, Groen AH, Olsen KS,
Lok BH, Leeman JE, Anderson E, Riaz N, McBride S, et al: Outcomes
of multimodal therapy in a large series of patients with anaplastic
thyroid cancer. Cancer. 126:444–452. 2020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Bulotta S, Celano M, Costante G and Russo
D: Emerging strategies for managing differentiated thyroid cancers
refractory to radioiodine. Endocrine. 52:214–221. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ljubas J, Ovesen T and Rusan M: A
Systematic review of phase II targeted therapy clinical trials in
anaplastic thyroid cancer. Cancers (Basel). 11:9432019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Rigalli JP, Tocchetti GN, Arana MR,
Villanueva SS, Catania VA, Theile D, Ruiz ML and Weiss J: The
phytoestrogen genistein enhances multidrug resistance in breast
cancer cell lines by translational regulation of ABC transporters.
Cancer Lett. 376:165–172. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bespalov VG, Alexandrov VA, Semenov AL,
Vysochina GI, Kostikova VA and Baranenko DA: The inhibitory effect
of Filipendula ulmaria (L.) Maxim. on colorectal
carcinogenesis induced in rats by methylnitrosourea. J
Ethnopharmacol. 227:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Samec M, Liskova A, Kubatka P, Uramova S,
Zubor P, Samuel SM, Zulli A, Pec M, Bielik T, Biringer K, et al:
The role of dietary phytochemicals in the carcinogenesis via the
modulation of miRNA expression. J Cancer Res Clin Oncol.
145:1665–1679. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kapinova A, Kubatka P, Golubnitschaja O,
Kello M, Zubor P, Solar P and Pec M: Dietary phytochemicals in
breast cancer research: Anticancer effects and potential utility
for effective chemoprevention. Environ Health Prev Med. 23:362018.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Schwertheim S, Wein F, Lennartz K, Worm K,
Schmid KW and Sheu-Grabellus SY: Curcumin induces G2/M arrest,
apoptosis, NF-kappaB inhibition, and expression of differentiation
genes in thyroid carcinoma cells. J Cancer Res Clin Oncol.
143:1143–1154. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Allegri L, Rosignolo F, Mio C, Filetti S,
Baldan F and Damante G: Effects of nutraceuticals on anaplastic
thyroid cancer cells. J Cancer Res Clin Oncol. 144:285–294. 2018.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Hu T, Wang L, Zhang L, Lu L, Shen J, Chan
RL, Li M, Wu WK, To KK and Cho CH: Sensitivity of
apoptosis-resistant colon cancer cells to tanshinones is mediated
by autophagic cell death and p53-independent cytotoxicity.
Phytomedicine. 22:536–544. 2015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tan S, Hou X and Mei L: Dihydrotanshinone
I inhibits human glioma cell proliferation via the activation of
ferroptosis. Oncol Lett. 20:1222020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wang X, Xu X, Jiang G, Zhang C, Liu L,
Kang J, Wang J, Owusu L, Zhou L, Zhang L and Li W:
Dihydrotanshinone I inhibits ovarian cancer cell proliferation and
migration by transcriptional repression of PIK3CA gene. J Cell Mol
Med. 24:11177–11187. 2020. View Article : Google Scholar : PubMed/NCBI
|
60
|
Bates M, Spillane CD, Gallagher MF, McCann
A, Martin C, Blackshields G, Keegan H, Gubbins L, Brooks R, Brooks
D, et al: The role of the MAD2-TLR4-MyD88 axis in paclitaxel
resistance in ovarian cancer. PLoS One. 15:e02437152020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Pajuelo-Lozano N, Alcalá S, Sainz B Jr,
Perona R and Sanchez-Perez I: Targeting MAD2 modulates stemness and
tumorigenesis in human Gastric cancer cell lines. Theranostics.
10:9601–9618. 2020. View Article : Google Scholar : PubMed/NCBI
|
62
|
Nascimento AV, Singh A, Bousbaa H,
Ferreira D, Sarmento B and Amiji MM: Overcoming cisplatin
resistance in non-small cell lung cancer with Mad2 silencing siRNA
delivered systemically using EGFR-targeted chitosan nanoparticles.
Acta Biomater. 47:71–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Seto A, Sugitani I, Toda K, Kawabata K,
Takahashi S and Saotome T: Chemotherapy for anaplastic thyroid
cancer using docetaxel and cisplatin: Report of eight cases. Surg
Today. 45:221–226. 2013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Ranganath R, Shah MA and Shah AR:
Anaplastic thyroid cancer. Curr Opin Endocrinol Diabetes Obes.
22:387–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
65
|
Celano M, Maggisano V, Bulotta S, Allegri
L, Pecce V, Abballe L, Damante G and Russo D: Quercetin improves
the effects of sorafenib on growth and migration of thyroid cancer
cells. Endocrine. 67:496–498. 2020. View Article : Google Scholar : PubMed/NCBI
|