Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)
- Authors:
- Lin Cao
- Tianqiao Huang
- Xiaohong Chen
- Weisha Li
- Xingjiu Yang
- Wenlong Zhang
- Mengyuan Li
- Ran Gao
-
Affiliations: Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China, Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China - Published online on: September 3, 2021 https://doi.org/10.3892/or.2021.8179
- Article Number: 228
This article is mentioned in:
Abstract
Imtiyaz HZ and Simon MC: Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 345:105–120. 2010.PubMed/NCBI | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Koltai T: The Ph paradigm in cancer. Eur J Clin Nutr. 74 (Suppl 1):S14–S19. 2020. View Article : Google Scholar | |
Jancic CC, Cabrini M, Gabelloni ML, Rodríguez Rodrigues C, Salamone G, Trevani AS and Geffner J: Low extracellular pH stimulates the production of IL-1beta by human monocytes. Cytokine. 57:258–268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, et al: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153:1239–1251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M and Takahashi H: Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett. 167:72–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chalmin F, Bruchard M, Vegran F and Ghiringhelli F: Regulation of T cell antitumor immune response by tumor induced metabolic stress. Cell Stress. 3:9–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM: Tumor-altered dendritic cell function: Implications for anti-tumor immunity. Front Immunol. 4:1922013. View Article : Google Scholar : PubMed/NCBI | |
Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, et al: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 112:645–657. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Elly C, Park Y and Liu YC: E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity. 42:1062–1074. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martínez D, Vermeulen M, Trevani A, Ceballos A, Sabatté J, Gamberale R, Alvarez ME, Salamone G, Tanos T, Coso OA and Geffner J: Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. J Immunol. 176:1163–1171. 2006. View Article : Google Scholar : PubMed/NCBI | |
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Erra Díaz F, Dantas E and Geffner J: Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018:12182972018. View Article : Google Scholar : PubMed/NCBI | |
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C and Rivoltini L: Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 43:74–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
McDonald PC, Chafe SC and Dedhar S: Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol. 4:272016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Guo B, Wang J, Cheng X, Xu Y and Sang J: Ovarian cancer G protein coupled receptor 1 suppresses cell migration of MCF7 breast cancer cells via a Gα12/13-Rho-Rac1 pathway. J Mol Signal. 8:62013. View Article : Google Scholar : PubMed/NCBI | |
Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, Sicklick J, Nishihara H, Lowy AM and Insel PA: GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. FASEB J. 32:1170–1183. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L and Sonveaux P: Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 1863:2481–2497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP and Wilson MC: The monocarboxylate transporter family-role and regulation. IUBMB Life. 64:109–119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alfarouk KO: Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem. 31:859–866. 2016. View Article : Google Scholar : PubMed/NCBI | |
Merezhinskaya N, Ogunwuyi SA, Mullick FG and Fishbein WN: Presence and localization of three lactic acid transporters (MCT1, −2, and −4) in separated human granulocytes, lymphocytes, and monocytes. J Histochem Cytochem. 52:1483–1493. 2004. View Article : Google Scholar : PubMed/NCBI | |
Merezhinskaya N, Ogunwuyi SA and Fishbein WN: Expression of monocarboxylate transporter 4 in human platelets, leukocytes, and tissues assessed by antibodies raised against terminal versus pre-terminal peptides. Mol Genet Metab. 87:152–161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Long Y, Gao Z, Hu X, Xiang F, Wu Z, Zhang J, Han X, Yin L, Qin J, Lan L, et al: Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer Med. 7:4690–4700. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, et al: Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest. 123:4479–4488. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D, Bundick RV, Cook ID, Craggs RI, Edwards S, et al: Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol. 1:371–376. 2005. View Article : Google Scholar : PubMed/NCBI | |
Végran F, Boidot R, Michiels C, Sonveaux P and Feron O: Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71:2550–2560. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Feng Q, Wang Z, Li W, Sun Z, Wilhelm J, Huang G, Vo T, Sumer BD and Gao J: Tumor-targeted inhibition of monocarboxylate transporter 1 improves T-cell immunotherapy of solid tumors. Adv Healthc Mater. 10:e20005492021. View Article : Google Scholar : PubMed/NCBI | |
Raychaudhuri D, Bhattacharya R, Sinha BP, Liu CSC, Ghosh AR, Rahaman O, Bandopadhyay P, Sarif J, D'Rozario R, Paul S, et al: Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front Immunol. 10:18782019. View Article : Google Scholar : PubMed/NCBI | |
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, et al: The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Zhou Y, Yao J, Qiao C, Ni T, Guo R, Guo Q and Lu N: Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget. 6:16198–16214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ and Liu G: The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem. 290:46–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Li S: Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 388:1118462020. View Article : Google Scholar : PubMed/NCBI | |
Stone SC, Rossetti RA, Alvarez KL, Carvalho JP, Margarido PF, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP and Lepique AP: Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol. 105:1041–1054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Wang Z, Liang X, Wang Y, Gao L and Ma C: Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflammation. 16:2402019. View Article : Google Scholar : PubMed/NCBI | |
Silva LS, Poschet G, Nonnenmacher Y, Becker HM, Sapcariu S, Gaupel AC, Schlotter M, Wu Y, Kneisel N, Seiffert M, et al: Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype. EMBO Rep. 18:2172–2185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, et al: Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 294:20135–20147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mikkilineni L, Whitaker-Menezes D, Domingo-Vidal M, Sprandio J, Avena P, Cotzia P, Dulau-Florea A, Gong J, Uppal G, Zhan T, et al: Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin Oncol. 44:218–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
Afonso J, Pinto T, Simões-Sousa S, Schmitt F, Longatto-Filho A, Pinheiro C, Marques H and Baltazar F: Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma-MCT1 as potential target in diffuse large B cell lymphoma. Cell Oncol (Dordr). 42:303–318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, Wantuch S, Parkes HG, Tandy D, Harker JA and Leach MO: Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br J Cancer. 122:895–903. 2020. View Article : Google Scholar : PubMed/NCBI | |
Noble RA, Bell N, Blair H, Sikka A, Thomas H, Phillips N, Nakjang S, Miwa S, Crossland R, Rand V, et al: Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica. 102:1247–1257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Braga M, Kaliszczak M, Carroll L, Schug ZT, Heinzmann K, Baxan N, Benito A, Valbuena GN, Stribbling S, Beckley A, et al: Tracing nutrient flux following monocarboxylate transporter-1 inhibition with AZD3965. Cancers (Basel). 12:17032020. View Article : Google Scholar : PubMed/NCBI | |
Draoui N, Schicke O, Seront E, Bouzin C, Sonveaux P, Riant O and Feron O: Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol Cancer Ther. 13:1410–1418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, et al: Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther. 17:2285–2296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, et al: Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 29:135–150.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cho KS, Yamada T, Wynn C, Behanna HA, Hong IC, Manaves V, Nakanishi T, Hirose J, Abe Y, Jiang H, et al: Mechanism analysis of long-term graft survival by monocarboxylate transporter-1 inhibition. Transplantation. 90:1299–1306. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kondapalli KC, Prasad H and Rao R: An inside job: How endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci. 8:1722014. View Article : Google Scholar : PubMed/NCBI | |
De Vito P: The sodium/hydrogen exchanger: A possible mediator of immunity. Cell Immunol. 240:69–85. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vereninov AA, Vassilieva IO, Yurinskaya VE, Matveev VV, Glushankova LN, Lang F and Matskevitch JA: Differential transcription of ion transporters, NHE1, ATP1B1, NKCC1 in human peripheral blood lymphocytes activated to proliferation. Cell Physiol Biochem. 11:19–26. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chang CP, Wang SW, Huang ZL, Wang OY, Huang MI, Lu LM, Tarng DC, Chien CH and Chien EJ: Non-genomic rapid inhibition of Na+/H+-exchange 1 and apoptotic immunosuppression in human T cells by glucocorticoids. J Cell Physiol. 223:679–686. 2010.PubMed/NCBI | |
Chien EJ, Hsu CH, Chang VH, Lin EP, Kuo TP, Chien CH and Lin HY: In human T cells mifepristone antagonizes glucocorticoid non-genomic rapid responses in terms of Na(+)/H(+)-exchange 1 activity, but not ezrin/radixin/moesin phosphorylation. Steroids. 111:29–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xing K, Gu B, Zhang P and Wu X: Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: An insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol. 16:392015. View Article : Google Scholar : PubMed/NCBI | |
Lai JN, Wang OY, Lin VH, Liao CF, Tarng DC and Chien EJ: The non-genomic rapid acidification in peripheral T cells by progesterone depends on intracellular calcium increase and not on Na+/H+-exchange inhibition. Steroids. 77:1017–1024. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh Y, Zhou Y, Shi X, Zhang S, Umbach AT, Salker MS, Lang KS and Lang F: Alkaline cytosolic pH and high sodium hydrogen exchanger 1 (NHE1) activity in Th9 cells. J Biol Chem. 291:23662–23671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rotte A, Pasham V, Eichenmüller M, Yang W, Bhandaru M and Lang F: Influence of dexamethasone on Na+/H+ exchanger activity in dendritic cells. Cell Physiol Biochem. 28:305–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Bhandaru M, Pasham V, Bobbala D, Zelenak C, Jilani K, Rotte A and Lang F: Effect of thymoquinone on cytosolic pH and Na+/H+ exchanger activity in mouse dendritic cells. Cell Physiol Biochem. 29:21–30. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Pasham V, Chatterjee S, Rotte A, Yang W, Bhandaru M, Singh Y and Lang F: Regulation of Na+/H+ exchanger in dendritic cells by Akt1. Cell Physiol Biochem. 36:1237–1249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS and Sun D: Glioma-mediated microglial activation promotes glioma proliferation and migration: Roles of Na+/H+ exchanger isoform 1. Carcinogenesis. 37:839–851. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, et al: Selective role of Na+/H+ exchanger in Cx3cr1+ microglial activation, white matter demyelination, and post-stroke function recovery. Glia. 66:2279–2298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, et al: Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun. 10:39782019. View Article : Google Scholar : PubMed/NCBI | |
Takakuwa S, Mizuno N, Takano T, Asakawa S, Sato T, Hiratsuka M and Hirasawa N: Down-regulation of Na+/H+ exchanger 1 by Toll-like receptor stimulation in macrophages. Immunobiology. 222:176–182. 2017. View Article : Google Scholar : PubMed/NCBI | |
Provost JJ and Wallert MA: Inside out: Targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chem Biol Drug Des. 81:85–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Asgharzadeh MR, Barar J, Pourseif MM, Eskandani M, Jafari Niya M, Mashayekhi MR and Omidi Y: Molecular machineries of pH dysregulation in tumor microenvironment: Potential targets for cancer therapy. Bioimpacts. 7:115–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Chanana V, Watters JJ, Ferrazzano P and Sun D: Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J Neurochem. 119:124–135. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu CL, Liu X, Wang Y, Deng Z, Liu T, Sukhova GK, Wojtkiewicz GR, Tang R, Zhang JY, Achilefu S, et al: Reduced Nhe1 (Na+-H+ Exchanger-1) function protects ApoE-deficient mice From Ang II (Angiotensin II)-induced abdominal aortic aneurysms. Hypertension. 76:87–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W and Sun D: Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis. 9:10102018. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Li Q, Wang J, Chang G, Lin Y, Li H, Wang L, Gao W and Pang T: Na+/H+ exchanger 1 inhibition contributes to K562 leukaemic cell differentiation. Cell Biol Int. 36:739–745. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fliegel L: Structural and functional changes in the Na+/H+ exchanger isoform 1, induced by Erk1/2 phosphorylation. Int J Mol Sci. 20:23782019. View Article : Google Scholar : PubMed/NCBI | |
Smith AN, Lovering RC, Futai M, Takeda J, Brown D and Karet FE: Revised nomenclature for mammalian vacuolar-type H+ -ATPase subunit genes. Mol Cell. 12:801–803. 2003. View Article : Google Scholar : PubMed/NCBI | |
Forgac M: Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 8:917–929. 2007. View Article : Google Scholar : PubMed/NCBI | |
McGuire C, Stransky L, Cotter K and Forgac M: Regulation of V-ATPase activity. Front Biosci (Landmark Ed). 22:609–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kulshrestha A, Katara GK, Ginter J, Pamarthy S, Ibrahim SA, Jaiswal MK, Sandulescu C, Periakaruppan R, Dolan J, Gilman-Sachs A and Beaman KD: Selective inhibition of tumor cell associated Vacuolar-ATPase ‘a2’ isoform overcomes cisplatin resistance in ovarian cancer cells. Mol Oncol. 10:789–805. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith GA, Howell GJ, Phillips C, Muench SP, Ponnambalam S and Harrison MA: Extracellular and luminal pH regulation by vacuolar H+-ATPase isoform expression and targeting to the plasma membrane and endosomes. J Biol Chem. 291:8500–8515. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stransky L, Cotter K and Forgac M: The function of V-ATPases in cancer. Physiol Rev. 96:1071–1091. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rao Z, Jordan PM, Wang Y, Menche D, Pace S, Gerstmeier J and Werz O: Differential role of vacuolar (H+)-ATPase in the expression and activity of cyclooxygenase-2 in human monocytes. Biochem Pharmacol. 175:1138582020. View Article : Google Scholar : PubMed/NCBI | |
Sahoo M, Katara GK, Bilal MY, Ibrahim SA, Kulshrestha A, Fleetwood S, Suzue K and Beaman KD: Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget. 9:33215–33231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peterson TV, Jaiswal MK, Beaman KD and Reynolds JM: Conditional deletion of the V-ATPase a2-subunit disrupts intrathymic T cell development. Front Immunol. 10:19112019. View Article : Google Scholar : PubMed/NCBI | |
Rothenberg EV, Ungerbäck J and Champhekar A: Forging T-lymphocyte identity: Intersecting networks of transcriptional control. Adv Immunol. 129:109–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
McGuire C, Cotter K, Stransky L and Forgac M: Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 1857:1213–1218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim SA, Kulshrestha A, Katara GK, Amin MA and Beaman KD: Cancer derived peptide of vacuolar ATPase ‘a2’ isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci Rep. 6:368652016. View Article : Google Scholar : PubMed/NCBI | |
Katara GK, Jaiswal MK, Kulshrestha A, Kolli B, Gilman-Sachs A and Beaman KD: Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene. 33:5649–5654. 2014. View Article : Google Scholar : PubMed/NCBI | |
Katara GK, Kulshrestha A, Mao L, Wang X, Sahoo M, Ibrahim S, Pamarthy S, Suzue K, Shekhawat GS, Gilman-Sachs A and Beaman KD: Mammary epithelium-specific inactivation of V-ATPase reduces stiffness of extracellular matrix and enhances metastasis of breast cancer. Mol Oncol. 12:208–223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim SA, Kulshrestha A, Katara GK, Riehl V, Sahoo M and Beaman KD: Cancer-associated V-ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol Oncol. 14:590–610. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E and Beaman K: Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol. 97:1121–1131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Liu N, Xie X, Bi G, Ba H, Li L, Zhang J, Deng X, Yao Y, Tang Z, et al: The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy. 15:960–975. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murase M, Kawasaki T, Hakozaki R, Sueyoshi T, Putri DD, Kitai Y, Sato S, Ikawa M and Kawai T: Intravesicular acidification regulates lipopolysaccharide inflammation and tolerance through TLR4 trafficking. J Immunol. 200:2798–2808. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, Ito D, Morimoto K, Hosokawa T, Hayama Y, et al: Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 7:131302016. View Article : Google Scholar : PubMed/NCBI | |
Rao Z, Pace S, Jordan PM, Bilancia R, Troisi F, Börner F, Andreas N, Kamradt T, Menche D, Rossi A, et al: Vacuolar (H+)-ATPase critically regulates specialized proresolving mediator pathways in human M2-like monocyte-derived macrophages and has a crucial role in resolution of inflammation. J Immunol. 203:1031–1043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kuchuk O, Tuccitto A, Citterio D, Huber V, Camisaschi C, Milione M, Vergani B, Villa A, Alison MR, Carradori S, et al: pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. OncoImmunology. 7:e14454522018. View Article : Google Scholar : PubMed/NCBI | |
Thomas L, Rao Z, Gerstmeier J, Raasch M, Weinigel C, Rummler S, Menche D, Müller R, Pergola C, Mosig A and Werz O: Selective upregulation of TNFα expression in classically-activated human monocyte-derived macrophages (M1) through pharmacological interference with V-ATPase. Biochem Pharmacol. 130:71–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bowman EJ, Graham LA, Stevens TH and Bowman BJ: The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem. 279:33131–33138. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Chen L, Chen Y, Shao Q and Qin W: Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp Ther Med. 10:1829–1834. 2015. View Article : Google Scholar : PubMed/NCBI | |
Halcrow P, Khan N, Datta G, Ohm JE, Chen X and Geiger JD: Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. 2:e11932019.PubMed/NCBI | |
Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, et al: Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 100:345–356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Emruli VK, Olsson R, Ek F and Ek S: Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma. BMC Cancer. 16:4932016. View Article : Google Scholar : PubMed/NCBI | |
Fais S: Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J Intern Med. 267:515–525. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, et al: pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer. 127:207–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Denny WA and Wilson WR: Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells. J Med Chem. 29:879–887. 1986. View Article : Google Scholar : PubMed/NCBI | |
Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A, Marra M, Lugini L, Logozzi M, Lozupone F, et al: Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 96:1702–1713. 2004. View Article : Google Scholar : PubMed/NCBI | |
Corbet C and Feron O: Tumour acidosis: From the passenger to the driver's seat. Nat Rev Cancer. 17:577–593. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neri D and Supuran CT: Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 10:767–777. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T and Rabinowitz JD: Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 9:7122013. View Article : Google Scholar : PubMed/NCBI | |
Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J and Pastorekova S: Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 4:4002014. View Article : Google Scholar : PubMed/NCBI | |
Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA and Gaston B: Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 161((3 Pt 1)): 694–699. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wen T, Mingler MK, Wahl B, Khorki ME, Pabst O, Zimmermann N and Rothenberg ME: Carbonic anhydrase IV is expressed on IL-5-activated murine eosinophils. J Immunol. 192:5481–5489. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pulendran B and Artis D: New paradigms in type 2 immunity. Science. 337:431–435. 2012. View Article : Google Scholar : PubMed/NCBI | |
Henry EK, Sy CB, Inclan-Rico JM, Espinosa V, Ghanny SS, Dwyer DF, Soteropoulos P, Rivera A and Siracusa MC: Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 213:1663–1673. 2016. View Article : Google Scholar : PubMed/NCBI | |
Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, Sattentau QA, Comeau MR, Spergel JM and Artis D: Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 133:1390–1399, 1399.e1-6. 2014. View Article : Google Scholar : PubMed/NCBI | |
Winum JY: Carbonic anhydrase enzymes for regulating mast cell hematopoiesis and type-2 inflammation: A patent evaluation (WO2017/058370). Expert Opin Ther Pat. 28:741–743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Supuran CT: Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat. 28:709–712. 2018. View Article : Google Scholar : PubMed/NCBI | |
Supuran CT, Altamimi ASA and Carta F: Carbonic anhydrase inhibition and the management of glaucoma: A literature and patent review 2013–2019. Expert Opin Ther Pat. 29:781–792. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borenshtein D, Schlieper KA, Rickman BH, Chapman JM, Schweinfest CW, Fox JG and Schauer DB: Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice. Infect Immun. 77:3639–3650. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mori K, Yamanishi H, Ikeda Y, Kumagi T, Hiasa Y, Matsuura B, Abe M and Onji M: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3-CD4+CD25-T cells. J Leukoc Biol. 93:963–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S and Amit I: Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 159:1312–1326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lounnas N, Rosilio C, Nebout M, Mary D, Griessinger E, Neffati Z, Chiche J, Spits H, Hagenbeek TJ, Asnafi V, et al: Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Lett. 333:76–88. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim-Hashim A and Estrella V: Acidosis and cancer: From mechanism to neutralization. Cancer Metastasis Rev. 38:149–155. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, et al: Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunol Res. 7:1064–1078. 2019. View Article : Google Scholar : PubMed/NCBI | |
McDonald PC, Chia S, Bedard PL, Chu Q, Lyle M, Tang L, Singh M, Zhang Z, Supuran CT, Renouf DJ and Dedhar S: A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol. 43:484–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nasu K, Yamaguchi K, Takanashi T, Tamai K, Sato I, Ine S, Sasaki O, Satoh K, Tanaka N, Tanaka Y, et al: Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells. Cancer Sci. 108:435–443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen LQ, Howison CM, Spier C, Stopeck AT, Malm SW, Pagel MD and Baker AF: Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models. Leuk Lymphoma. 56:1432–1439. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Zhao L, Liu Y, Gong H, Song Y, Lei L, Zhu Y, Jin Z, Ma S, Hu B, et al: Combining DNA vaccine and AIDA-1 in attenuated Salmonella activates tumor-specific CD4+ and CD8+ T-cell responses. Cancer Immunol Res. 5:503–514. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun YY, Peng S, Han L, Qiu J, Song L, Tsai Y, Yang B, Roden RB, Trimble CL, Hung CF and Wu TC: Local HPV Recombinant vaccinia boost following priming with an HPV DNA vaccine enhances local HPV-specific CD8+ T-cell-mediated tumor control in the genital tract. Clin Cancer Res. 22:657–669. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Yang C, Zhang Z, Liu J, Zheng J and Kong D: Poly(ethylene glycol)-grafted polyethylenimine modified with G250 monoclonal antibody for tumor gene therapy. Hum Gene Ther. 21:191–198. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wei Z, Yang H, Li X, Wang Q, Wang L and Li S: Enhance the anti-renca carcinoma effect of a DNA vaccine targeting G250 gene by co-expression with cytotoxic T-lymphocyte associated antigen-4(CTLA-4). Biomed Pharmacother. 90:147–152. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chai D, Shan H, Wang G, Zhang Q, Li H, Fang L, Song J, Liu N, Zhang Q, Yao H and Zheng J: Combining DNA vaccine and AIM2 in H1 nanoparticles exert anti-renal carcinoma effects via enhancing tumor-specific multi-functional CD8+ T-cell responses. Mol Cancer Ther. 18:323–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Xu J, Ding J, Liu H, Li H, Li H, Lu M, Miao Y, Wang Z, Fu Q and Zheng J: Bortezomib improves adoptive carbonic anhydrase IX-specific chimeric antigen receptor-modified NK92 cell therapy in mouse models of human renal cell carcinoma. Oncol Rep. 40:3714–3724. 2018.PubMed/NCBI | |
Li H, Ding J, Lu M, Liu H, Miao Y, Li L, Wang G, Zheng J, Pei D and Zhang Q: CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother. 43:16–28. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM and Bénard F: Trimeric radiofluorinated sulfonamide derivatives to achieve in vivo selectivity for carbonic anhydrase IX-targeted PET imaging. J Nucl Med. 56:1434–1440. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dubois LJ, Niemans R, van Kuijk SJ, Panth KM, Parvathaneni NK, Peeters SG, Zegers CM, Rekers NH, van Gisbergen MW, Biemans R, et al: New ways to image and target tumour hypoxia and its molecular responses. Radiother Oncol. 116:352–357. 2015. View Article : Google Scholar : PubMed/NCBI | |
Justus CR, Dong L and Yang LV: Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol. 4:3542013. View Article : Google Scholar : PubMed/NCBI | |
Liu JP, Nakakura T, Tomura H, Tobo M, Mogi C, Wang JQ, He XD, Takano M, Damirin A, Komachi M, et al: Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res. 61:499–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM and Seuwen K: Proton-sensing G-protein-coupled receptors. Nature. 425:93–98. 2003. View Article : Google Scholar : PubMed/NCBI | |
Damaghi M, Wojtkowiak JW and Gillies RJ: pH sensing and regulation in cancer. Front Physiol. 4:3702013. View Article : Google Scholar : PubMed/NCBI | |
Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mulé JJ, Ibrahim-Hashim A and Gillies RJ: Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76:1381–1390. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wiley SZ, Sriram K, Salmerón C and Insel PA: GPR68: An emerging drug target in cancer. Int J Mol Sci. 20:5592019. View Article : Google Scholar : PubMed/NCBI | |
Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI | |
de Vallière C, Wang Y, Eloranta JJ, Vidal S, Clay I, Spalinger MR, Tcymbarevich I, Terhalle A, Ludwig MG, Suply T, et al: G Protein-coupled pH-sensing receptor OGR1 is a regulator of intestinal inflammation. Inflamm Bowel Dis. 21:1269–1281. 2015.PubMed/NCBI | |
Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, Melhem H, Weber A, Leucht K, Wolfram L, et al: The proton-activated receptor GPR4 modulates intestinal inflammation. J Crohn's Colitis. 12:355–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Frasch SC, McNamee EN, Kominsky D, Jedlicka P, Jakubzick C, Zemski Berry K, Mack M, Furuta GT, Lee JJ, Henson PM, et al: G2A signaling dampens colitic inflammation via production of IFN-γ. J Immunol. 197:1425–1434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, et al: G2A protects mice against sepsis by modulating kupffer cell activation: Cooperativity with adenosine receptor 2b. J Immunol. 202:527–538. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su YS, Huang YF, Wong J, Lee CW, Hsieh WS and Sun WH: G2A as a Threshold regulator of inflammatory hyperalgesia modulates chronic hyperalgesia. J Mol Neurosci. 64:39–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Osthues T, Zimmer B, Rimola V, Klann K, Schilling K, Mathoor P, Angioni C, Weigert A, Geisslinger G, Münch C, et al: The lipid receptor G2A (GPR132) mediates macrophage migration in nerve injury-induced neuropathic pain. Cells. 9:17402020. View Article : Google Scholar : PubMed/NCBI | |
Kern K, Schäfer SMG, Cohnen J, Pierre S, Osthues T, Tarighi N, Hohmann S, Ferreiros N, Brüne B, Weigert A, et al: The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue. Front Immunol. 9:22612018. View Article : Google Scholar : PubMed/NCBI | |
Kung CC, Dai SP, Chiang H, Huang HS and Sun WH: Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression. Mol Biol Rep. 47:3423–3437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dai SP, Hsieh WS, Chen CH, Lu YH, Huang HS, Chang DM, Huang SL and Sun WH: TDAG8 deficiency reduces satellite glial number and pro-inflammatory macrophage number to relieve rheumatoid arthritis disease severity and chronic pain. J Neuroinflammation. 17:1702020. View Article : Google Scholar : PubMed/NCBI | |
Tsurumaki H, Mogi C, Aoki-Saito H, Tobo M, Kamide Y, Yatomi M, Sato K, Dobashi K, Ishizuka T, Hisada T, et al: Protective role of proton-sensing TDAG8 in lipopolysaccharide-induced acute lung injury. Int J Mol Sci. 16:28931–28942. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tcymbarevich I, Richards SM, Russo G, Kühn-Georgijevic J, Cosin-Roger J, Baebler K, Lang S, Bengs S, Atrott K, Bettoni C, et al: Lack of the pH-sensing receptor TDAG8 [GPR65] in macrophages plays a detrimental role in murine models of inflammatory bowel disease. J Crohns Colitis. 13:245–258. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, Siegwart DJ and Wan Y: Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci USA. 114:580–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Singh LS, Zhang L and Xu Y: Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene. 33:157–164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holgate ST: Innate and adaptive immune responses in asthma. Nat Med. 18:673–683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aoki H, Mogi C, Hisada T, Nakakura T, Kamide Y, Ichimonji I, Tomura H, Tobo M, Sato K, Tsurumaki H, et al: Proton-sensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS One. 8:e799852013. View Article : Google Scholar : PubMed/NCBI | |
Kottyan LC, Collier AR, Cao KH, Niese KA, Hedgebeth M, Radu CG, Witte ON, Khurana Hershey GK, Rothenberg ME and Zimmermann N: Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood. 114:2774–2782. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanderlin EJ, Marie M, Velcicky J, Loetscher P and Yang LV: Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur J Pharmacol. 852:218–230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Velcicky J, Miltz W, Oberhauser B, Orain D, Vaupel A, Weigand K, Dawson King J, Littlewood-Evans A, Nash M, Feifel R and Loetscher P: Development of selective, orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. J Med Chem. 60:3672–3683. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miltz W, Velcicky J, Dawson J, Littlewood-Evans A, Ludwig MG, Seuwen K, Feifel R, Oberhauser B, Meyer A, Gabriel D, et al: Design and synthesis of potent and orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. Bioorg Med Chem. 25:4512–4525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fukuda H, Ito S, Watari K, Mogi C, Arisawa M, Okajima F, Kurose H and Shuto S: Identification of a potent and selective GPR4 antagonist as a drug lead for the treatment of myocardial infarction. ACS Med Chem Lett. 7:493–497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lengacher S, Nehiri-Sitayeb T, Steiner N, Carneiro L, Favrod C, Preitner F, Thorens B, Stehle JC, Dix L, Pralong F, et al: Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS One. 8:e825052013. View Article : Google Scholar : PubMed/NCBI | |
Draoui N, Schicke O, Fernandes A, Drozak X, Nahra F, Dumont A, Douxfils J, Hermans E, Dogné JM, Corbau R, et al: Synthesis and pharmacological evaluation of carboxycoumarins as a new antitumor treatment targeting lactate transport in cancer cells. Bioorg Med Chem. 21:7107–7117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reshkin SJ, Cardone RA and Harguindey S: Na+-H+ exchanger, pH regulation and cancer. Recent Patents Anticancer Drug Discov. 8:85–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferrari S, Perut F, Fagioli F, Brach Del Prever A, Meazza C, Parafioriti A, Picci P, Gambarotti M, Avnet S, Baldini N and Fais S: Proton pump inhibitor chemosensitization in human osteosarcoma: From the bench to the patients' bed. J Transl Med. 11:2682013. View Article : Google Scholar : PubMed/NCBI | |
Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasché P, Myers ML, et al: Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: Results of the EXPEDITION study. Ann Thorac Surg. 85:1261–1270. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Schröder R, Tiemann R, et al: The Na(+)/H(+) exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J Am Coll Cardiol. 38:1644–1650. 2001. View Article : Google Scholar : PubMed/NCBI | |
Théroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, Schroeder JS, Tognoni G, White HD, Willerson JT and Jessel A: Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation. 102:3032–3038. 2000. View Article : Google Scholar : PubMed/NCBI | |
Atwal KS, O'Neil SV, Ahmad S, Doweyko L, Kirby M, Dorso CR, Chandrasena G, Chen BC, Zhao R and Zahler R: Synthesis and biological activity of 5-aryl-4-(4-(5-methyl-1H-imidazol-4-yl)piperidin-1-yl)pyrimidine analogs as potent, highly selective, and orally bioavailable NHE-1 inhibitors. Bioorg Med Chem Lett. 16:4796–4799. 2006. View Article : Google Scholar : PubMed/NCBI | |
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA and Reshkin SJ: Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs-an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med. 11:2822013. View Article : Google Scholar : PubMed/NCBI | |
Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouysségur J, Gatenby RA, Rivoltini L and Fais S: Proton dynamics in cancer. J Transl Med. 8:572010. View Article : Google Scholar : PubMed/NCBI | |
Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S and Fais S: Proton channels and exchangers in cancer. Biochim Biophys Acta. 1848:2715–2726. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC and Pouysségur J: Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69:358–368. 2009. View Article : Google Scholar : PubMed/NCBI | |
Salmon H, Remark R, Gnjatic S and Merad M: Host tissue determinants of tumour immunity. Nat Rev Cancer. 19:215–227. 2019.PubMed/NCBI |