Bile reflux and hypopharyngeal cancer (Review)
- Authors:
- Dimitra P. Vageli
- Sotirios G. Doukas
- Panagiotis G. Doukas
- Benjamin L. Judson
-
Affiliations: The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA - Published online on: September 23, 2021 https://doi.org/10.3892/or.2021.8195
- Article Number: 244
-
Copyright: © Vageli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hashibe M, Boffetta P, Zaridze D, Shangina O, Szeszeni-Dabrowska N, Mates D, Fabiánová E, Rudnai P and Brennan P: Contribution of tobacco and alcohol to the high rates of squamous cell carcinoma of the supraglottis and glottis in Central Europe. Am J Epidemiol. 165:814–820. 2007. View Article : Google Scholar : PubMed/NCBI | |
Curado MP and Hashibe M: Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol. 21:194–200. 2009. View Article : Google Scholar : PubMed/NCBI | |
Talamini R, Bosetti C, La Vecchia C, Dal Maso L, Levi F, Bidoli E, Negri E, Pasche C, Vaccarella S, Barzan L and Franceschi S: Combined effect of tobacco and alcohol on laryngeal cancer risk: A case-control study. Cancer Causes Control. 13:957–964. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pöschl G and Seitz HK: Alcohol and cancer. Alcohol Alcohol. 39:155–165. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galli J, Cammarota G, De Corso E, Agostino S, Cianci R, Almadori G and Paludetti G: Biliary laryngopharyngeal reflux: A new pathological entity. Curr Opin Otolaryngol Head Neck Surg. 14:128–132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tutar H, Erdamar H, Köybaşioğlu A, Dinç AE, Ceylan A and Uslu S: Can bile acids be an etiological factor for laryngeal carcinoma? ORL J Otorhinolaryngol Relat Spec. 73:156–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
Geterud A, Bove M and Ruth M: Hypopharyngeal acid exposure: An independent risk factor for laryngeal cancer? Laryngoscope. 113:2201–2205. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sereg-Bahar M, Jerin A and Hocevar-Boltezar I: Higher levels of total pepsin and bile acids in the saliva as a possible risk factor for early laryngeal cancer. Radiol Oncol. 49:59–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
Altman KW, Prufer N and Vaezi MF: A review of clinical practice guidelines for reflux disease: toward creating a clinical protocol for the otolaryngologist. Laryngoscope. 121:717–723. 2011. View Article : Google Scholar : PubMed/NCBI | |
Assimakopoulos D and Patrikakos G: The role of gastroesophageal reflux in the pathogenesis of laryngeal carcinoma. Am J Otolaryngol. 23:351–357. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Marotta J, Hundal J, Chow J and Eisen RN: Bile-induced laryngitis: Is there a basis in evidence? Ann Otol Rhinol Laryngol. 114:192–197. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Issaeva N and Vageli DP: In vitro model for gastroduodenal reflux-induced nuclear factor-kappaB activation and its role in hypopharyngeal carcinogenesis. Head Neck. 38 (Suppl 1):E1381–E1391. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vageli DP, Prasad ML and Sasaki CT: Gastro-duodenal fluid induced nuclear Factor-κappaB activation and early pre-malignant alterations in murine hypopharyngeal mucosa. Oncotarget. 7:5892–5908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT and Vageli DP: MiR-21, miR-155, miR-192, and miR-375 deregulations related to NF-kappaB activation in gastroduodenal Fluid-Induced early Preneoplastic lesions of laryngeal mucosa in vivo. Neoplasia. 18:329–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Doukas SG, Costa J and Vageli DP: The progressive mutagenic effects of acidic bile refluxate in hypopharyngeal squamous cell carcinogenesis: New insights. Cancers (Basel). 12:10642020. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Doukas SG, Doukas PG and Vageli DP: Weakly acidic bile is a risk factor for hypopharyngeal carcinogenesis evidenced by DNA damage, antiapoptotic function, and premalignant dysplastic lesions in vivo. Cancers (Basel). 13:8522021. View Article : Google Scholar : PubMed/NCBI | |
Doukas SG, Cardoso B, Tower JI, Vageli DP and Sasaki CT: Biliary tumorigenic effect on hypopharyngeal cells is significantly enhanced by pH reduction. Cancer Med. 8:4417–4427. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Doukas SG, Costa J and Vageli DP: Biliary reflux as a causal factor in hypopharyngeal carcinoma: New clinical evidence and implications. Cancer. 125:3554–3565. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Doukas SG and Vageli DP: In Vivo Short-Term topical application of BAY 11-7082 prevents the acidic Bile-Induced mRNA and miRNA oncogenic phenotypes in exposed Murine Hypopharyngeal Mucosa. Neoplasia. 20:374–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vageli DP, Doukas SG, Spock T and Sasaki CT: Curcumin prevents the bile reflux-induced NF-κB-related mRNA oncogenic phenotype, in human hypopharyngeal cells. J Cell Mol Med. 22:4209–4220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vageli DP, Doukas SG and Sasaki CT: Inhibition of NF-kappaB prevents the acidic bile-induced oncogenic mRNA phenotype, in human hypopharyngeal cells. Oncotarget. 9:5876–5891. 2017. View Article : Google Scholar : PubMed/NCBI | |
Doukas SG, Vageli DP and Sasaki CT: NF-κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in human hypopharyngeal cells. J Cell Mol Med. 22:2922–2934. 2018. View Article : Google Scholar : PubMed/NCBI | |
Doukas PG, Vageli DP, Doukas SG and Sasaki CT: Temporal characteristics of NF-κB inhibition in blocking bile-induced oncogenic molecular events in hypopharyngeal cells. Oncotarget. 10:3339–3351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doukas SG, Doukas PG, Sasaki CT and Vageli D: The in vivo preventive and therapeutic properties of curcumin in bile reflux-related oncogenesis of the hypopharynx. J Cell Mol Med. 24:10311–10321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vageli DP, Kasle D, Doukas SG, Doukas PG and Sasaki CT: The temporal effects of topical NF-κB inhibition, in the in vivo prevention of bile-related oncogenic mRNA and miRNA phenotypes in murine hypopharyngeal mucosa: A preclinical model. Oncotarget. 11:3303–3314. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hofmann AF: Chemistry and enterohepatic circulation of bile acids. Hepatology. 4 (Suppl 5):4S–14S. 1984. View Article : Google Scholar : PubMed/NCBI | |
Greek Medicine, . http://www.greekmedicine.net/b_p/Four_Humors.html | |
Rather LJ: Disturbance of function (functio laesa): The legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull NY Acad Med. 47:303–322. 1971.PubMed/NCBI | |
Virchow R and Rather LJ: Disease, Life, and Man: Selected Essays. Stanford University Press; Stanford, CA: 1958 | |
Cook JW: Carcinogenic chemical agents. Yale J Biol Med. 11:1–13. 1938.PubMed/NCBI | |
Bernstein H, Bernstein C, Payne CM, Dvorakova K and Garewal H: Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 589:47–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara A, Saito T and Kobayashi M: Bile acids promote carcinogenesis in the remnant stomach of rats. J Cancer Res Clin Oncol. 115:423–428. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hill MJ: Bile flow and colon cancer. Mutat Res. 238:313–320. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bayerdörffer E, Mannes GA, Ochsenkühn T, Dirschedl P, Wiebecke B and Paumgartner G: Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 36:268–273. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nehra D, Howell P, Williams CP, Pye JK and Beynon J: Toxic bile acids in gastro-oesophageal reflux disease: Influence of gastric acidity. Gut. 44:598–602. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vaezi MF and Richter JE: Double reflux: Double trouble. Gut. 44:590–592. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vaezi MF, Singh S and Richter JE: Role of acid and duodenogastric reflux in esophageal mucosal injury: A review of animal and human studies. Gastroenterology. 108:1897–1907. 1995. View Article : Google Scholar : PubMed/NCBI | |
Gotley DC, Morgan AP and Cooper MJ: Bile acid concentrations in the refluxate of patients with reflux oesophagitis. Br J Surg. 75:587–590. 1988. View Article : Google Scholar : PubMed/NCBI | |
Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG and Hagen JA: Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg. 222:525–531. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kauer WK, Peters JH, DeMeester TR, Feussner H, Ireland AP, Stein HJ and Siewert RJ: Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery. 122:874–881. 1997. View Article : Google Scholar : PubMed/NCBI | |
Domellof L, Reddy BS and Weisburger JH: Microflora and deconjugation of bile acids in alkaline reflux after partial gastrectomy. Am J Surg. 140:291–295. 1980. View Article : Google Scholar : PubMed/NCBI | |
Fein M, Peters JH, Chandrasoma P, Ireland AP, Oberg S, Ritter MP, Bremner CG, Hagen JA and DeMeester TR: Duodenoesophageal reflux induces esophageal adenocarcinoma without exogenous carcinogen. J Gastrointest Surg. 2:260–268. 1998. View Article : Google Scholar : PubMed/NCBI | |
McQuaid KR, Laine L, Fennerty MB, Souza R and Spechler SJ: Systematic review: The role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther. 34:146–165. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oh DS, Hagen JA, Fein M, Bremner CG, Dunst CM, Demeester SR, Lipham J and Demeester TR: The impact of reflux composition on mucosal injury and esophageal function. J Gastrointest Surg. 10:787–796. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sweet MP, Patti MG, Hoopes C, Hays SR and Golden JA: Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax. 64:167–173. 2009. View Article : Google Scholar : PubMed/NCBI | |
Covington MF, Krupinski E, Avery RJ and Kuo PH: Classification schema of symptomatic enterogastric reflux utilizing sincalide augmentation on hepatobiliary scintigraphy. J Nucl Med Technol. 42:198–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lewin JS, Gillenwater AM, Garrett JD, Bishop-Leone JK, Nguyen DD, Callender DL, Ayers GD and Myers JN: Characterization of laryngopharyngeal reflux in patients with premalignant or early carcinomas of the larynx. Cancer. 97:1010–1014. 2003. View Article : Google Scholar : PubMed/NCBI | |
Johnston N, Ondrey F, Rosen R, Hurley BP, Gould J, Allen J, DelGaudio J and Altman KW: Airway reflux. Ann N Y Acad Sci. 1381:5–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Adams J, Heintz P, Gross N, Andersen P, Everts E, Wax M and Cohen J: Acid/pepsin promotion of carcinogenesis in the hamster cheek pouch. Arch Otolaryngol Head Neck Surg. 126:405–409. 2000. View Article : Google Scholar : PubMed/NCBI | |
Johnston N, Dettmar PW, Ondrey FG, Nanchal R, Lee SH and Bock JM: Pepsin: Biomarker, mediator, and therapeutic target for reflux and aspiration. Ann NY Acad Sci. 1434:282–289. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnston N, Wells CW, Samuels TL and Blumin JH: Pepsin in nonacidic refluxate can damage hypopharyngeal epithelial cells. Ann Otol Rhinol Laryngol. 118:677–685. 2009. View Article : Google Scholar : PubMed/NCBI | |
Del Negro A, Araújo MR, Tincani AJ, Meirelles L, Martins AS and Andreollo NA: Experimental carcinogenesis on the oropharyngeal mucosa of rats with hydrochloric acid, sodium nitrate and pepsin. Acta Cir Bras. 23:337–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Toman J and Vageli D: The in vitro effect of Acidic-Pepsin on nuclear factor KappaB activation and its related oncogenic effect on normal human hypopharyngeal cells. PLoS One. 11:e01682692016. View Article : Google Scholar : PubMed/NCBI | |
Doukas PG, Vageli DP, Sasaki CT and Judson BL: Pepsin promotes activation of epidermal growth factor receptor and downstream oncogenic pathways, at slightly acidic and neutral pH, in exposed hypopharyngeal cells. Int J Mol Sci. 22:42752021. View Article : Google Scholar : PubMed/NCBI | |
Goldstein JL, Schlesinger PK, Mozwecz HL and Layden TJ: Esophageal mucosal resistance. A factor in esophagitis. Gastroenterol Clin North Am. 19:565–586. 1990. View Article : Google Scholar : PubMed/NCBI | |
Stamp D and Jenkins G: An overview of bile-acid synthesis, chemistry and function. Bile Acids: Toxicology and Bioactivity. Jenkins GJ and Hardie L: Royal Society of Chemistry; Cambridge: 2008, Print: Issues in Toxicology; 4. https://pubs.rsc.org/en/content/ebook/978-0-85404-846-5 View Article : Google Scholar | |
Stamp DH: Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy. Med Hypotheses. 59:398–405. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ireland AP, Peters JH, Smyrk TC, DeMeester TR, Clark GW, Mirvish SS and Adrian TE: Gastric juice protects against the development of esophageal adenocarcinoma in the rat. Ann Surg. 224:358–370. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, Holubec H, Sampliner RE, Guy N, Condon A, et al: Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: Relevance to the pathogenesis of Barrett's oesophagus. Gut. 56:763–771. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kauer WK and Stein HJ: Role of acid and bile in the genesis of Barrett's esophagus. Chest Surg Clin N Am. 12:39–45. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ulualp SO, Roland PS, Toohill RJ and Shaker R: Prevalence of gastroesophagopharyngeal acid reflux events: An evidence-based systematic review. Am J Otolaryngol. 26:239–244. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lillemoe KD, Gadacz TR and Harmon JW: Bile absorption occurs during disruption of the esophageal mucosal barrier. J Surg Res. 35:57–62. 1983. View Article : Google Scholar : PubMed/NCBI | |
Sasaki CT, Hajek M, Doukas SG and Vageli DP: The role of bile reflux and its related NF-κB activated pathway in progression of hypopharyngeal squamous cell cancer. Oral Oncol. 105:1046682020. View Article : Google Scholar : PubMed/NCBI | |
Hemmink GJ, Bredenoord AJ, Weusten BL, Monkelbaan JF, Timmer R and Smout AJ: Esophageal pH-impedance monitoring in patients with therapy-resistant reflux symptoms: ‘On’ or ‘off’ proton pump inhibitor? Am J Gastroenterol. 103:2446–2453. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE and Crowley CL: Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 108:37–46. 1999. View Article : Google Scholar : PubMed/NCBI | |
Huo X, Juergens S, Zhang X, Rezaei D, Yu C, Strauch ED, Wang JY, Cheng E, Meyer F, Wang DH, et al: Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells. Am J Physiol Gastrointest Liver Physiol. 301:G278–G286. 2011. View Article : Google Scholar : PubMed/NCBI | |
Langevin SM, Michaud DS, Marsit CJ, Nelson HH, Birnbaum AE, Eliot M, Christensen BC, McClean MD and Kelsey KT: Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 22:1061–1068. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coca-Pelaz A, Rodrigo JP, Takes RP, Silver CE, Paccagnella D, Rinaldo A, Hinni ML and Ferlito A: Relationship between reflux and laryngeal cancer. Head Neck. 35:1814–1818. 2013. View Article : Google Scholar : PubMed/NCBI | |
Attwood SE, Smyrk TC, DeMeester TR, Mirvish SS, Stein HJ and Hinder RA: Duodenoesophageal reflux and the development of esophageal adenocarcinoma in rats. Surgery. 111:503–510. 1992.PubMed/NCBI | |
Fein M, Fuchs KH, Stopper H, Diem S and Herderich M: Duodenogastric reflux and foregut carcinogenesis: Analysis of duodenal juice in a rodent model of cancer. Carcinogenesis. 21:2079–2084. 2000. View Article : Google Scholar : PubMed/NCBI | |
Miwa K, Hattori T and Miyazaki I: Duodenogastric reflux and foregut carcinogenesis. Cancer. 75 (Suppl 6):S1426–S1432. 1995. View Article : Google Scholar | |
Fang Y, Chen H, Hu Y, Djukic Z, Tevebaugh W, Shaheen NJ, Orlando RC, Hu J and Chen X: Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 305:G58–G65. 2013. View Article : Google Scholar : PubMed/NCBI | |
McAdam E, Haboubi HN, Griffiths AP, Baxter JN, Spencer-Harty S, Davies C and Jenkins GJ: Reflux composition influences the level of NF-κB activation and upstream kinase preference in oesophageal adenocarcinoma cells. Int J Cancer. 136:527–535. 2015.PubMed/NCBI | |
Bus P, Siersema PD and van Baal JW: Cell culture models for studying the development of Barrett's esophagus: A systematic review. Cell Oncol (Dordr). 35:149–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ and Souza RF: Unlike esophageal squamous cells, Barrett's epithelial cells resist apoptosis by activating the nuclear factor-κB pathway. Cancer Res. 69:672–677. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Cho CH: Effect of NF-kappaB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets. 10:593–599. 2010. View Article : Google Scholar : PubMed/NCBI | |
DiDonato JA, Mercurio F and Karin M: NF-kappaB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hoesel B and Schmid JA: The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar : PubMed/NCBI | |
Nottingham LK, Yan CH, Yang X, Si H, Coupar J, Bian Y, Cheng TF, Allen C, Arun P, Gius D, et al: Aberrant IKKα and IKKβ cooperatively activate NF-κB and induce EGFR/AP1 signaling to promote survival and migration of head and neck cancer. Oncogene. 33:1135–1147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stadler ME, Patel MR, Couch ME and Hayes DN: Molecular biology of head and neck cancer: Risks and pathways. Hematol Oncol Clin North Am. 22:1099–1124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V and Gutkind JS: Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 45:324–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
King KE, Ponnamperuma RM, Allen C, Lu H, Duggal P, Chen Z, Van Waes C and Weinberg WC: The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth. Cancer Res. 68:5122–5131. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, Chaturvedi MM and Aggarwal BB: Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 26:1385–1397. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Jimi E, Zeiss C, Hayden MS and Ghosh S: Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev. 24:1709–1717. 2010. View Article : Google Scholar : PubMed/NCBI | |
Foxwell BM, Bondeson J, Brennan F and Feldmann M: Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: Evidence for heterogenecity in the requirement for NF-kappaB in tumour necrosis factor production. Ann Rheum Dis. 59 (Suppl 1):i54–i59. 2000. View Article : Google Scholar : PubMed/NCBI | |
Guyer RA and Macara IG: Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-κB/interleukin-6 (IL-6) axis in mouse mammary cells. J Biol Chem. 290:8457–8468. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang C, Huang Y, Yu Y, Li R, Li M, Liu N, Liu P and Qiao J: Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab. 100:201–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X and Zhu M: Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer. 13:4962013. View Article : Google Scholar : PubMed/NCBI | |
Klein JD and Grandis JR: The molecular pathogenesis of head and neck cancer. Cancer Biol Ther. 9:1–7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Allen CT, Ricker JL, Chen Z and Van Waes C: Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck. 29:959–971. 2007. View Article : Google Scholar : PubMed/NCBI | |
Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, et al: Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res. 64:6511–6523. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Ang KK, El-Naggar AK, Zanation AM, Cmelak AJ, et al: Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 66:8210–8218. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee TL, Yang XP, Yan B, Friedman J, Duggal P, Bagain L, Dong G, Yeh NT, Wang J, Zhou J, et al: A novel nuclear factor-kappaB gene signature is differentially expressed in head and neck squamous cell carcinomas in association with TP53 status. Clin Cancer Res. 13:5680–5691. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Souza RF: From reflux esophagitis to esophageal adenocarcinoma. Dig Dis. 34:483–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wroblewski LE, Peek RM Jr and Wilson KT: Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 23:713–739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shaheen N and Ransohoff DF: Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: Scientific review. JAMA. 287:1972–1981. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vander Broek R, Snow GE, Chen Z and Van Waes C: Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-kappaB signaling. Oral Oncol. 50:930–941. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baldwin AS Jr: The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol. 14:649–683. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Van Waes C and Chen Z: A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer. 122:1987–1998. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wheeler SE, Suzuki S, Thomas SM, Sen M, Leeman-Neill RJ, Chiosea SI, Kuan CT, Bigner DD, Gooding WE, Lai SY and Grandis JR: Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene. 29:5135–5145. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Yang X, Lee TL, Friedman J, Tang J, Van Waes C and Chen Z: Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol. 8:R782007. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Li H, Yang X, Shao J, Jang M, Guan D, Zou S, Van Waes C, Chen Z and Zhan M: Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One. 8:e736562013. View Article : Google Scholar : PubMed/NCBI | |
Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD and Gutkind JS: Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res. 63:2948–2956. 2003.PubMed/NCBI | |
Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, et al: ΔNp63 versatility regulates a Broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 71:3688–3700. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du J, Romano RA, Si H, Mattox A, Bian Y, Yang X, Sinha S, Van Waes C and Chen Z: Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation. J Pathol. 232:356–368. 2014. View Article : Google Scholar : PubMed/NCBI | |
Squarize CH, Castilho RM, Sriuranpong V, Pinto DS Jr and Gutkind JS: Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia. 8:733–746. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yap LF, Ahmad M, Zabidi MM, Chu TL, Chai SJ, Lee HM, Lim PV, Wei W, Dawson C, Teo SH, et al: Oncogenic effects of WNT5A in Epstein-Barr virus associated nasopharyngeal carcinoma. Int J Oncol. 44:1774–1780. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sherwood V, Chaurasiya SK, Ekström EJ, Guilmain W, Liu Q, Koeck T, Brown K, Hansson K, Agnarsdóttir M, Bergqvist M, et al: WNT5A-mediated β-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis. 35:784–794. 2014. View Article : Google Scholar : PubMed/NCBI | |
Asem MS, Buechler S, Wates RB, Miller DL and Stack MS: Wnt5a Signaling in Cancer. Cancers (Basel). 8:792016. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi C and Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 5:297–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Lou S, Tan J, Xu K, Jia Q and Zheng W: Nuclear factor-kappa B inhibition can enhance apoptosis of differentiated thyroid cancer cells induced by 131I. PLoS One. 7:e335972012. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Bai L, Chen W and Xu S: The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 14:45–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van Waes C: Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res. 13:1076–1082. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wilken R, Veena MS, Wang MB and Srivatsan ES: Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 10:122011. View Article : Google Scholar : PubMed/NCBI | |
LoTempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES and Wang MB: Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res. 11:6994–7002. 2005. View Article : Google Scholar : PubMed/NCBI | |
Naksuriya O, Okonogi S, Schiffelers RM and Hennink WE: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 35:3365–3383. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Mao R and Yang J: NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gaykalova DA, Manola JB, Ozawa H, Zizkova V, Morton K, Bishop JA, Sharma R, Zhang C, Michailidi C, Considine M, et al: NF-κB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int J Cancer. 137:1879–1889. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khaznadar SS, Khan M, Schmid E, Gebhart S, Becker ET, Krahn T and von Ahsen O: EGFR overexpression is not common in patients with head and neck cancer. Cell lines are not representative for the clinical situation in this indication. Oncotarget. 9:28965–28975. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, Burtness B, Leemans CR, Lui VW, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
Vander Broek R, Mohan S, Eytan DF, Chen Z and Van Waes C: The PI3K/Akt/mTOR axis in head and neck cancer: Functions, aberrations, cross-talk, and therapies. Oral Dis. 21:815–825. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yang Z, Passaniti A, Lapidus RG, Liu X, Cullen KJ and Dan HC: A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-kB regulates head and neck squamous cell carcinoma proliferation. Oncotarget. 7:31892–31906. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harris RE: Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem. 42:93–126. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lim JW, Kim H and Kim KH: Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest. 81:349–360. 2001. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Liu L, Chin PC and D'Mello SR: Akt is a downstream target of NF-kappa B. J Biol Chem. 277:29674–29680. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB and Sarkar FH: Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem. 13:1002–1013. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baud V and Karin M: Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 8:33–40. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Michaille JJ and Croce CM: MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev. 253:167–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, Huang XF, Cui HJ and Sun GB: MiR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: Association with patient survival. Am J Transl Res. 6:604–613. 2014.PubMed/NCBI | |
Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, Huang XF, Cui HJ, Sun GB, Li RL and Duan JL: MiR-21/miR-375 ratio is an independent prognostic factor in patients with laryngeal squamous cell carcinoma. Am J Cancer Res. 5:1775–1785. 2015.PubMed/NCBI | |
Arantes LM, Laus AC, Melendez ME, de Carvalho AC, Sorroche BP, De Marchi PR, Evangelista AF, Scapulatempo-Neto C, de Souza Viana L and Carvalho AL: MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget. 8:9911–9921. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yu J, Ma Y, Wang F and Liu H: MiR-148a and miR-375 may serve as predictive biomarkers for early diagnosis of laryngeal carcinoma. Oncol Lett. 12:871–878. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang K, Chen X, Meng H, Song M, Wang Y, Xu X and Bai Y: Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells. BMC Mol Biol. 13:42012. View Article : Google Scholar : PubMed/NCBI | |
Li HP, Zeng XC, Zhang B, Long JT, Zhou B, Tan GS, Zeng WX, Chen W and Yang JY: MiR-451 inhibits cell proliferation in human hepatocellular carcinoma through direct suppression of IKK-β. Carcinogenesis. 34:2443–2451. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Zeng F, Liu J, Lv D and Liu S: Correlation betweenmir-21 expression and laryngeal carcinoma risks: A meta-analysis. J Evid Based Med. 9:32–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Zhan G, Ye D, Ren Y, Cheng L, Wu Z and Guo J: MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med Oncol. 29:2473–2480. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Xian PF, Yang L and Wang SX: MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-κB nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. Biomed Res Int. 2016:92790782016.PubMed/NCBI | |
Kikkawa N, Kinoshita T, Nohata N, Hanazawa T, Yamamoto N, Fukumoto I, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y and Seki N: MicroRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int J Oncol. 44:2085–2092. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y and Seki N: MiR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer. 103:877–884. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fukumoto I, Kinoshita T, Hanazawa T, Kikkawa N, Chiyomaru T, Enokida H, Yamamoto N, Goto Y, Nishikawa R, Nakagawa M, et al: Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer. 111:386–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B, Waldron J, et al: Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 16:1129–1139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tai J, Xiao X, Huang ZG, Yu ZK, Chen XH, Zhou WG, Chen XJ, Rao YS, Fang JG and Ni X: MicroRNAs regulate epithelial-mesenchymal transition of supraglottic laryngeal cancer. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 48:499–503. 2013.(In Chinese). PubMed/NCBI | |
Zhao XD, Zhang W, Liang HJ and Ji WY: Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One. 8:e563952013. View Article : Google Scholar : PubMed/NCBI | |
Luzna P, Gregar J, Uberall I, Radova L, Prochazka V and Ehrmann J Jr: Changes of microRNAs-192, 196a and 203 correlate with Barrett's esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol. 6:1142011. View Article : Google Scholar : PubMed/NCBI | |
Bus P, Siersema PD, Verbeek RE and van Baal JW: Upregulation of miRNA-143, −145, −192, and −194 in esophageal epithelial cells upon acidic bile salt stimulation. Dis Esophagus. 27:591–600. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M and Zhou X: MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res. 4:e22013. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Fang S, Di Y, Ying W, Tan Y and Gu W: Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One. 10:e01215472015. View Article : Google Scholar : PubMed/NCBI | |
Xiao T, Ling M, Xu H, Luo F, Xue J, Chen C, Bai J, Zhang Q, Wang Y, Bian Q and Liu Q: NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 377:1146162019. View Article : Google Scholar : PubMed/NCBI | |
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Croce CM and Michaille JJ: MiR-155: On the crosstalk between inflammation and cancer. Int Rev Immunol. 28:264–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bharti AC, Donato N, Singh S and Aggarwal BB: Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 101:1053–1062. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P and Grant S: Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood. 103:2761–2770. 2004. View Article : Google Scholar : PubMed/NCBI | |
Monisha J, Roy NK, Bordoloi D, Kumar A, Golla R, Kotoky J, Padmavathi G and Kunnumakkara AB: Nuclear factor kappa B: A potential target to persecute head and neck cancer. Curr Drug Targets. 18:232–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karin M, Yamamoto Y and Wang QM: The IKK NF-kappa B system: A treasure trove for drug development. Nat Rev Drug Discov. 3:17–26. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ramadass V, Vaiyapuri T and Tergaonkar V: Small molecule NF-κB pathway inhibitors in clinic. Int J Mol Sci. 21:51642020. View Article : Google Scholar : PubMed/NCBI | |
Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI | |
Geiger JL, Grandis JR and Bauman JE: The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 56:84–92. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, Chauhan D, Anderson KC and Frank DA: Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 112:5095–5102. 2008. View Article : Google Scholar : PubMed/NCBI | |
Siddiquee KA, Gunning PT, Glenn M, Katt WP, Zhang S, Schrock C, Sebti SM, Jove R, Hamilton AD and Turkson J: An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol. 2:787–798. 2007. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goldman A, Shahidullah M, Goldman D, Khailova L, Watts G, Delamere N and Dvorak K: A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: Implication for Barrett's oesophagus. Gut. 59:1606–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bernstein H, Bernstein C, Payne CM and Dvorak K: Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 15:3329–3340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lechner S, Müller-Ladner U, Schlottmann K, Jung B, McClelland M, Rüschoff J, Welsh J, Schölmerich J and Kullmann F: Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis. 23:1281–1288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kinner A, Wu W, Staudt C and Iliakis G: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36:5678–5694. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rothkamm K and Löbrich M: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100:5057–5062. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nikitaki Z, Hellweg CE, Georgakilas AG and Ravanat JL: Stress-induced DNA damage biomarkers: Applications and limitations. Front Chem. 3:352015. View Article : Google Scholar : PubMed/NCBI | |
Tsantoulis PK, Kotsinas A, Sfikakis PP, Evangelou K, Sideridou M, Levy B, Mo L, Kittas C, Wu XR, Papavassiliou AG and Gorgoulis VG: Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene. 27:3256–3264. 2008. View Article : Google Scholar : PubMed/NCBI | |
Choudhari SK, Chaudhary M, Gadbail AR, Sharma A and Tekade S: Oxidative and antioxidative mechanisms in oral cancer and precancer: A review. Oral Oncol. 50:10–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
Janssens S and Tschopp J: Signals from within: The DNA-damage-induced NF-kappaB response. Cell Death Differ. 13:773–784. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kawanishi S, Ohnishi S, Ma N, Hiraku Y and Murata M: Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 18:18082017. View Article : Google Scholar : PubMed/NCBI | |
Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, Fini M and Russo MA: The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev. 2016:39071472016. View Article : Google Scholar : PubMed/NCBI | |
Li D and Cao W: Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB mediate bile acid-induced DNA damage in Barrett's esophageal adenocarcinoma cells. Sci Rep. 6:315382016. View Article : Google Scholar : PubMed/NCBI | |
Nema R, Vishwakarma S, Agarwal R, Panday RK and Kumar A: Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9:3269–3280. 2016.PubMed/NCBI | |
Tamashiro PM, Furuya H, Shimizu Y, Iino K and Kawamori T: The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules. 3:481–513. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Li X, Hylemon PB and Zhou H: Conjugated bile acids promote invasive growth of esophageal adenocarcinoma cells and cancer stem cell expansion via sphingosine 1-phosphate receptor 2-mediated yes-associated protein activation. Am J Pathol. 188:2042–2058. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT and Zhou Z: Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol. 10:29–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan B, Li H, Yang Z, Hoque A and Xu X: Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer. 119:1321–1329. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu JH, Zheng JB, Qi J, Yang K, Wu YH, Wang K, Wang CB and Sun XJ: Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signaling pathway. Int J Oncol. 54:879–892. 2019.PubMed/NCBI | |
Schweitzer A, Knauer SK and Stauber RH: Nuclear receptors in head and neck cancer: Current knowledge and perspectives. Int J Cancer. 126:801–809. 2010.PubMed/NCBI | |
Gadaleta RM, Oldenburg B, Willemsen EC, Spit M, Murzilli S, Salvatore L, Klomp LW, Siersema PD, van Erpecum KJ and van Mil SW: Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine. Biochim Biophys Acta. 1812:851–858. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang YD, Chen WD, Wang M, Yu D, Forman BM and Huang W: Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 48:1632–1643. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y and Sarkar FH: Signaling mechanism(s) of reactive oxygen species in epithelial-mesenchymal transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther. 5:74–80. 2010. View Article : Google Scholar : PubMed/NCBI |