Metabolism‑related pharmacokinetic drug‑drug interactions with poly (ADP‑ribose) polymerase inhibitors (Review)
- Authors:
- Dehua Zhao
- Xiaoqing Long
- Jisheng Wang
-
Affiliations: Department of Clinical Pharmacy, The Third Hospital of Mianyang Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China - Published online on: November 22, 2021 https://doi.org/10.3892/or.2021.8231
- Article Number: 20
This article is mentioned in:
Abstract
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, et al: An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem. 220:1134732021. View Article : Google Scholar : PubMed/NCBI | |
Tew WP, Lacchetti C, Ellis A, Maxian K, Banerjee S, Bookman M, Jones MB, Lee JM, Lheureux S, Liu JF, et al: PARP inhibitors in the management of ovarian cancer: ASCO guideline. J Clin Oncol. 38:3468–3493. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Coleman RL, González-Martín A, Moore KN, Colombo N, Ray-Coquard I and Pignata S: The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann Oncol. 31:1148–1159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Valabrega G, Scotto G, Tuninetti V, Pani A and Scaglione F: Differences in PARP inhibitors for the treatment of ovarian cancer: Mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci. 22:42032021. View Article : Google Scholar : PubMed/NCBI | |
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, et al: ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 31:1606–1622. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rolfo C, Swaisland H, Leunen K, Rutten A, Soetekouw P, Slater S, Verheul HM, Fielding A, So K, Bannister W and Dean E: Effect of food on the pharmacokinetics of olaparib after oral dosing of the capsule formulation in patients with advanced solid tumors. Adv Ther. 32:510–522. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dirix L, Swaisland H, Verheul HM, Rottey S, Leunen K, Jerusalem G, Rolfo C, Nielsen D, Molife LR, Kristeleit R, et al: Effect of itraconazole and rifampin on the pharmacokinetics of olaparib in patients with advanced solid tumors: Results of Two Phase I open-label studies. Clin Ther. 38:2286–2299. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao JJ, Nowak D, Ramlau R, Tomaszewska-Kiecana M, Wysocki PJ, Isaacson J, Beltman J, Nash E, Kaczanowski R, Arold G and Watkins S: Evaluation of drug-drug interactions of rucaparib and CYP1A2, CYP2C9, CYP2C19, CYP3A, and P-gp substrates in patients with an advanced solid tumor. Clin Transl Sci. 12:58–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Leeuwen RW, van Gelder T, Mathijssen RH and Jansman FG: Drug-drug interactions with tyrosine-kinase inhibitors: A clinical perspective. Lancet Oncol. 15:e315–e326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tannenbaum C and Sheehan NL: Understanding and preventing drug-drug and drug-gene interactions. Expert Rev Clin Pharmacol. 7:533–544. 2014. View Article : Google Scholar : PubMed/NCBI | |
US Food and Drug Administration: Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206162s011lbl.pdfJune 25–2021 | |
European Medicines Agency: Product information. https://www.ema.europa.eu/en/documents/product-information/lynparza-epar-product-information_en.pdfJune 25–2021 | |
US Food and Drug Administration Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208447s022s024lbl.pdfJune 25–2021 | |
European Medicines Agency: Product information. https://www.ema.europa.eu/en/documents/product-information/zejula-epar-product-information_en.pdfJune 25–2021 | |
US Food and Drug Administration Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209115s008lbl.pdfJune 25–2021 | |
European Medicines Agency: Product information. https://www.ema.europa.eu/en/documents/product-information/rubraca-epar-product-information_en.pdfJune 25–2021 | |
US Food and Drug Administration Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211651s006lbl.pdfJune 25–2021 | |
European Medicines Agency: Product information. https://www.ema.europa.eu/en/documents/product-information/talzenna-epar-product-information_en.pdfJune 25–2021 | |
LoRusso PM, Li J, Burger A, Heilbrun LK, Sausville EA, Boerner SA, Smith D, Pilat MJ, Zhang J, Tolaney SM, et al: Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with Irinotecan in patients with advanced solid tumors. Clin Cancer Res. 22:3227–3237. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mittica G, Ghisoni E, Giannone G, Genta S, Aglietta M, Sapino A and Valabrega G: PARP inhibitors in ovarian cancer. Recent Pat Anticancer Drug Discov. 13:392–410. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Delzer J, Voorman R, de Morais SM and Lao Y: Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos. 39:1161–1169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Teo YL, Ho HK and Chan A: Metabolism-related pharmacokinetic drug-drug interactions with tyrosine kinase inhibitors: Current understanding, challenges and recommendations. Br J Clin Pharmacol. 79:241–253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE and Zeldin DC: The human intestinal cytochrome P450 ‘pie’. Drug Metab Dispos. 34:880–886. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Ding X and Zhang QY: An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B. 6:374–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klomp F, Wenzel C, Drozdzik M and Oswald S: Drug-drug interactions involving intestinal and Hepatic CYP1A Enzymes. Pharmaceutics. 12:12012020. View Article : Google Scholar : PubMed/NCBI | |
van Herwaarden AE, van Waterschoot RA and Schinkel AH: How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci. 30:223–227. 2009. View Article : Google Scholar : PubMed/NCBI | |
Scripture CD and Figg WD: Drug interactions in cancer therapy. Nat Rev Cancer. 6:546–558. 2006. View Article : Google Scholar : PubMed/NCBI | |
Manikandan P and Nagini S: Cytochrome P450 structure, function and clinical significance: A review. Curr Drug Targets. 19:38–54. 2018. View Article : Google Scholar : PubMed/NCBI | |
Almazroo OA, Miah MK and Venkataramanan R: Drug metabolism in the liver. Clin Liver Dis. 21:1–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
An S, Jeon M, Kennedy EL and Kyoung M: Phase-separated condensates of metabolic complexes in living cells: Purinosome and glucosome. Methods Enzymol. 628:1–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roberts AG and Gibbs ME: Mechanisms and the clinical relevance of complex drug-drug interactions. Clin Pharmacol. 10:123–134. 2018.PubMed/NCBI | |
Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ and van Leeuwen RWF: Clinically relevant drug interactions with multikinase inhibitors: A review. Ther Adv Med Oncol. 11:17588359188183472019. View Article : Google Scholar : PubMed/NCBI | |
McCormick A, Swaisland H, Reddy VP, Learoyd M and Scarfe G: In vitro evaluation of the inhibition and induction potential of olaparib, a potent poly(ADP-ribose) polymerase inhibitor, on cytochrome P450. Xenobiotica. 48:555–564. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pilla Reddy V, Bui K, Scarfe G, Zhou D and Learoyd M: Physiologically based Pharmacokinetic modeling for olaparib dosing recommendations: Bridging formulations, drug interactions, and patient populations. Clin Pharmacol Ther. 105:229–241. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scott LJ: Niraparib: First global approval. Drugs. 77:1029–1034. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Andel L, Zhang Z, Lu S, Kansra V, Agarwal S, Hughes L, Tibben MM, Gebretensae A, Lucas L, Hillebrand MJX, et al: Human mass balance study and metabolite profiling of 14C-niraparib, a novel poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor, in patients with advanced cancer. Invest New Drugs. 35:751–765. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Watkins S, Nash E, Isaacson J, Etter J, Beltman J, Fan R, Shen L, Mutlib A, Kemeny V, et al: Evaluation of absorption, distribution, metabolism, and excretion of [(14)C]-rucaparib, a poly(ADP-ribose) polymerase inhibitor, in patients with advanced solid tumors. Invest New Drugs. 38:765–775. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Jaw-Tsai S, Beltman J, Simmons AD, Harding TC and Xiao JJ: Evaluation of in vitro absorption, distribution, metabolism, and excretion and assessment of drug-drug interaction of rucaparib, an orally potent poly(ADP-ribose) polymerase inhibitor. Xenobiotica. 50:1032–1042. 2020. View Article : Google Scholar : PubMed/NCBI | |
Syed YY: Rucaparib: First global approval. Drugs. 77:585–592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoy SM: Talazoparib: First global approval. Drugs. 78:1939–1946. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niu J, Scheuerell C, Mehrotra S, Karan S, Puhalla S, Kiesel BF, Ji J, Chu E, Gopalakrishnan M, Ivaturi V, et al: Parent-metabolite pharmacokinetic modeling and pharmacodynamics of veliparib (ABT-888), a PARP inhibitor, in patients with BRCA 1/2-mutated cancer or PARP-sensitive tumor types. J Clin Pharmacol. 57:977–987. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Petrie ID, Levy RH and Ragueneau-Majlessi I: Mechanisms and clinical significance of pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. Food and drug administration in 2017. Drug Metab Dispos. 47:135–144. 2019. View Article : Google Scholar : PubMed/NCBI | |
Preskorn SH: Drug-drug interactions (DDIs) in psychiatric practice, part 9: Interactions mediated by drug-metabolizing cytochrome P450 enzymes. J Psychiatr Pract. 26:126–134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mouly S, Lloret-Linares C, Sellier PO, Sene D and Bergmann JF: Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort? Pharmacol Res. 118:82–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thelen K and Dressman JB: Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 61:541–558. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rowland A, Miners JO and Mackenzie PI: The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 45:1121–1132. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miners JO, Chau N, Rowland A, Burns K, McKinnon RA, Mackenzie PI, Tucker GT, Knights KM and Kichenadasse G: Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochem Pharmacol. 129:85–95. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miners JO, Rowland A, Novak JJ, Lapham K and Goosen TC: Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther. 218:1076892021. View Article : Google Scholar : PubMed/NCBI | |
US Food and Drug Administration: Guidance for industry. drug interaction studies-study design, data analysis, implications for dosing, and labelling recommendations. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformatiom/Guidances/default/htmJune 5–2021. | |
European Medicines Agency: Guideline on the investigation of drug interactions. ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdfJune 5–2021 | |
Cheng X, Lv X, Qu H, Li D, Hu M, Guo W, Ge G and Dong R: Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1. Acta Pharm Sin B. 7:657–664. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang X, Wang Z, Jia Y, Feng Y, Jiang L, Xia Y, Cao J and Liu Y: In vitro inhibition of human UDP-glucuronosyltransferase (UGT) 1A1 by osimertinib, and prediction of in vivo drug-drug interactions. Toxicol Lett. 348:10–17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Korprasertthaworn P, Chau N, Nair PC, Rowland A and Miners JO: Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: Effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202. Biochem Pharmacol. 169:1136162019. View Article : Google Scholar : PubMed/NCBI | |
Min JS and Bae SK: Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res. 40:1356–1379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Falcão A, Fuseau E, Nunes T, Almeida L and Soares-da-Silva P: Pharmacokinetics, drug interactions and exposure-response relationship of eslicarbazepine acetate in adult patients with partial-onset seizures: Population pharmacokinetic and pharmacokinetic/pharmacodynamic analyses. CNS Drugs. 26:79–91. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zakrzewski-Jakubiak H, Doan J, Lamoureux P, Singh D, Turgeon J and Tannenbaum C: Detection and prevention of drug-drug interactions in the hospitalized elderly: Utility of new cytochrome p450-based software. Am J Geriatr Pharmacother. 9:461–470. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roblek T, Vaupotic T, Mrhar A and Lainscak M: Drug-drug interaction software in clinical practice: A systematic review. Eur J Clin Pharmacol. 71:131–142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Solassol I, Pinguet F and Quantin X: FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-Mutated Non-Small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules. 9:6682019. View Article : Google Scholar : PubMed/NCBI | |
Janssen JM, Dorlo TPC, Steeghs N, Beijnen JH, Hanff LM, van Eijkelenburg NKA, van der Lugt J, Zwaan CM and Huitema ADR: Pharmacokinetic targets for therapeutic drug monitoring of small molecule kinase inhibitors in pediatric oncology. Clin Pharmacol Ther. 108:494–505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Di Francia R, De Monaco A, Saggese M, Iaccarino G, Crisci S, Frigeri F, De Filippi R, Berretta M and Pinto A: Pharmacological profile and pharmacogenomics of anti-cancer drugs used for targeted therapy. Curr Cancer Drug Targets. 18:499–511. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cardoso E, Csajka C, Schneider MP and Widmer N: Effect of adherence on pharmacokinetic/pharmacodynamic relationships of oral targeted anticancer drugs. Clin Pharmacokinet. 57:1–6. 2018. View Article : Google Scholar : PubMed/NCBI |