1
|
Hsieh JJ, Purdue MP, Signoretti S, Swanton
C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal
cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rini BI, Battle D, Figlin RA, George DJ,
Hammers H, Hutson T, Jonasch E, Joseph RW, McDermott DF, Motzer RJ,
et al: The society for immunotherapy of cancer consensus statement
on immunotherapy for the treatment of advanced renal cell carcinoma
(RCC). J Immunother Cancer. 7:3542019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Walther TC and Farese RV Jr: Lipid
droplets and cellular lipid metabolism. Annu Rev Biochem.
81:687–714. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Petan T, Jarc E and Jusović M: Lipid
Droplets in Cancer: Guardians of Fat in a Stressful World.
Molecules. 23:19412018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qiu B, Ackerman D, Sanchez DJ, Li B,
Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B
and Simon MC: HIF2α-Dependent Lipid Storage Promotes Endoplasmic
Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer
Discov. 5:652–667. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ackerman D, Tumanov S, Qiu B,
Michalopoulou E, Spata M, Azzam A, Xie H, Simon MC and Kamphorst
JJ: Triglycerides promote lipid homeostasis during hypoxic stress
by balancing fatty acid saturation. Cell Rep. 24:2596–2605.e5.
2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guillou H, Zadravec D, Martin PG and
Jacobsson A: The key roles of elongases and desaturases in
mammalian fatty acid metabolism: Insights from transgenic mice.
Prog Lipid Res. 49:186–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
von Roemeling CA, Marlow LA, Wei JJ,
Cooper SJ, Caulfield TR, Wu K, Tan WW, Tun HW and Copland JA:
Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target
for clear cell renal cell carcinoma. Clin Cancer Res. 19:2368–2380.
2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lucarelli G, Ferro M, Loizzo D, Bianchi C,
Terracciano D, Cantiello F, Bell LN, Battaglia S, Porta C, Gernone
A, et al: Integration of Lipidomics and Transcriptomics Reveals
Reprogramming of the Lipid Metabolism and Composition in Clear Cell
Renal Cell Carcinoma. Metabolites. 10:5092020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang H, Zhang X, Liu F, Fan J, Wang B and
Dong C: SREBP1-driven lipid desaturation supports clear cell renal
cell carcinoma growth through regulation of NF-κB signaling.
Biochem Biophys Res Commun. 495:1383–1388. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pauter AM, Olsson P, Asadi A, Herslöf B,
Csikasz RI, Zadravec D and Jacobsson A: Elovl2 ablation
demonstrates that systemic DHA is endogenously produced and is
essential for lipid homeostasis in mice. J Lipid Res. 55:718–728.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kobayashi T, Zadravec D and Jacobsson A:
ELOVL2 overexpression enhances triacylglycerol synthesis in 3T3-L1
and F442A cells. FEBS Lett. 581:3157–3163. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lim K, Han C, Xu L, Isse K, Demetris AJ
and Wu T: Cyclooxygenase-2-derived prostaglandin E2 activates
beta-catenin in human cholangiocarcinoma cells: Evidence for
inhibition of these signaling pathways by omega 3 polyunsaturated
fatty acids. Cancer Res. 68:553–560. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yao QH, Zhang XC, Fu T, Gu JZ, Wang L,
Wang Y, Lai YB, Wang YQ and Guo Y: ω-3 polyunsaturated fatty acids
inhibit the proliferation of the lung adenocarcinoma cell line A549
in vitro. Mol Med Rep. 9:401–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Serhan CN, Hong S, Gronert K, Colgan SP,
Devchand PR, Mirick G and Moussignac RL: Resolvins: A family of
bioactive products of omega-3 fatty acid transformation circuits
initiated by aspirin treatment that counter proinflammation
signals. J Exp Med. 196:1025–1037. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sobin LH, Gospodarowicz MK and Wittekind
CH: TNM Classification of Malignant Tumors. (7th edition).
Wiley-Blackwell. (Chichester, West Sussex). 2009.
|
17
|
Fuhrman SA, Lasky LC and Limas C:
Prognostic significance of morphologic parameters in renal cell
carcinoma. Am J Surg Pathol. 6:655–663. 1982. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kandori S, Kojima T, Matsuoka T, Yoshino
T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y and
Nishiyama H: Phospholipase D2 promotes disease progression of renal
cell carcinoma through the induction of angiogenin. Cancer Sci.
109:1865–1875. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Grossman RL, Heath AP, Ferretti V, Varmus
HE, Lowy DR, Kibbe WA and Staudt LM: Toward a Shared Vision for
Cancer Genomic Data. N Engl J Med. 375:1109–1112. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park SJ, Yoon BH, Kim SK and Kim SY:
GENT2: An updated gene expression database for normal and tumor
tissues. BMC Med Genomics. 12 (Suppl 5):1012019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gimple RC, Kidwell RL, Kim LJY, Sun T,
Gromovsky AD, Wu Q, Wolf M, Lv D, Bhargava S, Jiang L, et al:
Glioma Stem Cell-Specific Superenhancer Promotes Polyunsaturated
Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discov.
9:1248–1267. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Purdy JG, Shenk T and Rabinowitz JD: Fatty
acid elongase 7 catalyzes lipidome remodeling essential for human
cytomegalovirus replication. Cell Rep. 10:1375–1385. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cong L, Ran FA, Cox D, Lin S, Barretto R,
Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al: Multiplex
genome engineering using CRISPR/Cas systems. Science. 339:819–823.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Miyamoto T, Lo PHY, Saichi N, Ueda K,
Hirata M, Tanikawa C and Matsuda K: Argininosuccinate synthase 1 is
an intrinsic Akt repressor transactivated by p53. Sci Adv.
3:e16032042017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mishra A, Zennami K, Velarde E, Thorek
DLJ, Yegnasubramanian S, DeWeese TL and Lupold SE: Longitudinal
measurement of subcutaneous and intratibial human prostate cancer
xenograft growth and response to ionizing radiation by plasma Alu
and LINE-1 ctDNA: A comparison to standard methods. Prostate.
81:745–753. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Folch J, Lees M and Sloane Stanley GH: A
simple method for the isolation and purification of total lipides
from animal tissues. J Biol Chem. 226:497–509. 1957. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gregory MK and James MJ: Rainbow trout
(Oncorhynchus mykiss) Elovl5 and Elovl2 differ in
selectivity for elongation of omega-3 docosapentaenoic acid.
Biochim Biophys Acta 1656–60. 20141841.PubMed/NCBI
|
29
|
Gregory MK and James MJ: Functional
characterization of the duck and turkey fatty acyl elongase enzymes
ELOVL5 and ELOVL2. J Nutr. 144:1234–1239. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Matsuura K, Canfield K, Feng W and
Kurokawa M: Metabolic Regulation of Apoptosis in Cancer. Int Rev
Cell Mol Biol. 327:43–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kang YP, Yoon JH, Long NP, Koo GB, Noh HJ,
Oh SJ, Lee SB, Kim HM, Hong JY, Lee WJ, et al: Spheroid-Induced
Epithelial-Mesenchymal Transition Provokes Global Alterations of
Breast Cancer Lipidome: A Multi-Layered Omics Analysis. Front
Oncol. 9:1452019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ding Y, Yang J, Ma Y, Yao T, Chen X, Ge S,
Wang L and Fan X: MYCN and PRC1 cooperatively repress
docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. J Exp
Clin Cancer Res. 38:4982019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Matsuyama M, Yoshimura R, Mitsuhashi M,
Tsuchida K, Takemoto Y, Kawahito Y, Sano H and Nakatani T:
5-Lipoxygenase inhibitors attenuate growth of human renal cell
carcinoma and induce apoptosis through arachidonic acid pathway.
Oncol Rep. 14:73–79. 2005.PubMed/NCBI
|
34
|
Matsuyama M and Yoshimura R: Relationship
between arachidonic acid pathway and human renal cell carcinoma.
OncoTargets Ther. 1:41–48. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tasaki S, Horiguchi A, Asano T, Ito K,
Asano T and Asakura H: Docosahexaenoic acid inhibits the
phosphorylation of STAT3 and the growth and invasion of renal
cancer cells. Exp Ther Med. 14:1146–1152. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
McCabe AJ, Wallace JMW, Gilmore WS,
McGlynn H and Strain SJ: Docosahexaenoic acid reduces in vitro
invasion of renal cell carcinoma by elevated levels of tissue
inhibitor of metalloproteinase-1. J Nutr Biochem. 16:17–22. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Balaban S, Lee LS, Varney B, Aishah A, Gao
Q, Shearer RF, Saunders DN, Grewal T and Hoy AJ: Heterogeneity of
fatty acid metabolism in breast cancer cells underlies differential
sensitivity to palmitate-induced apoptosis. Mol Oncol.
12:1623–1638. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Balaban S, Nassar ZD, Zhang AY,
Hosseini-Beheshti E, Centenera MM, Schreuder M, Lin HM, Aishah A,
Varney B, Liu-Fu F, et al: Extracellular Fatty Acids Are the Major
Contributor to Lipid Synthesis in Prostate Cancer. Mol Cancer Res.
17:949–962. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bellini L, Campana M, Rouch C, Chacinska
M, Bugliani M, Meneyrol K, Hainault I, Lenoir V, Denom J, Véret J,
et al: Protective role of the ELOVL2/docosahexaenoic acid axis in
glucolipotoxicity-induced apoptosis in rodent beta cells and human
islets. Diabetologia. 61:1780–1793. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Masuoka HC, Mott J, Bronk SF, Werneburg
NW, Akazawa Y, Kaufmann SH and Gores GJ: Mcl-1 degradation during
hepatocyte lipoapoptosis. J Biol Chem. 284:30039–30048. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Shimabukuro M, Wang MY, Zhou YT, Newgard
CB and Unger RH: Protection against lipoapoptosis of beta cells
through leptin-dependent maintenance of Bcl-2 expression. Proc Natl
Acad Sci USA. 95:9558–9561. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Akazawa Y, Cazanave S, Mott JL, Elmi N,
Bronk SF, Kohno S, Charlton MR and Gores GJ: Palmitoleate
attenuates palmitate-induced Bim and PUMA up-regulation and
hepatocyte lipoapoptosis. J Hepatol. 52:586–593. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cazanave SC, Wang X, Zhou H, Rahmani M,
Grant S, Durrant DE, Klaassen CD, Yamamoto M and Sanyal AJ:
Degradation of Keap1 activates BH3-only proteins Bim and PUMA
during hepatocyte lipoapoptosis. Cell Death Differ. 21:1303–1312.
2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hu H, Tian M, Ding C and Yu S: The C/EBP
Homologous Protein (CHOP) Transcription Factor Functions in
Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial
Infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI
|