Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells
- Authors:
- Sumire Suzuki
- Masato Ogawa
- Masaya Miyazaki
- Kohki Ota
- Hiromi Kazama
- Ayako Hirota
- Naoharu Takano
- Masaki Hiramoto
- Keisuke Miyazawa
-
Affiliations: Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan - Published online on: December 24, 2021 https://doi.org/10.3892/or.2021.8251
- Article Number: 40
-
Copyright: © Suzuki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ushio J, Kanno A, Ikeda E, Ando K, Nagai H, Miwata T, Kawasaki Y, Tada Y, Yokoyama K, Numao N, et al: Pancreatic ductal adenocarcinoma: Epidemiology and risk factors. Diagnostics (Basel). 11:5622021. View Article : Google Scholar : PubMed/NCBI | |
Rai V and Agrawal S: Targets (metabolic mediators) of therapeutic importance in pancreatic ductal adenocarcinoma. Int J Mol Sci. 21:85022020. View Article : Google Scholar : PubMed/NCBI | |
Feig C, Gopinathan A, Neesse A, Chan DS, Cook N and Tuveson DA: The pancreas cancer microenvironment. Clin Cancer Res. 18:4266–4276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suker M, Beumer BR, Sadot E, Marthey L, Faris JE, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PJ, et al: FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 17:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar : PubMed/NCBI | |
Florey O and Overholtzer M: Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philos Trans R Soc Lond B Biol Sci. 374:201801542019. View Article : Google Scholar : PubMed/NCBI | |
Bryant KL, Mancias JD, Kimmelman AC and Der CJ: KRAS: Feeding pancreatic cancer proliferation. Trends Biochem Sci. 39:91–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Piffoux M, Eriau E and Cassier PA: Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer. 124:333–344. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su H, Yang F, Fu R, Li X, French R, Mose E, Pu X, Trinh B, Kumar A, Liu J, et al: Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell. 39:678–693.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Morishita H and Mizushima N: Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 35:453–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. 2016. View Article : Google Scholar : PubMed/NCBI | |
Recouvreux MV and Commisso C: Macropinocytosis: A metabolic adaptation to nutrient stress in cancer. Front Endocrinol (Lausanne). 8:2612017. View Article : Google Scholar : PubMed/NCBI | |
Perera RM and Zoncu R: The lysosome as a regulatory Hub. Annu Rev Cell Dev Biol. 32:223–253. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Yano J, Mercier V, Htwe HH, Shin HR, Rademaker G, Cakir Z, Ituarte T, Wen KW, Kim GE, et al: Lysosomal retargeting of myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat Cell Biol. 23:232–242. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ota K, Okuma T, Lorenzo A, Yokota A, Hino H, Kazama H, Moriya S, Takano N, Hiramoto M and Miyazawa K: Fingolimod sensitizes EGFR wild-type non-small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest. Oncol Rep. 42:231–242. 2019.PubMed/NCBI | |
Zhang N, Qi Y, Wadham C, Wang L, Warren A, Di W and Xia P: FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: A protective role of autophagy. Autophagy. 6:1157–1167. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liao A, Hu R, Zhao Q, Li J, Li Y, Yao K, Zhang R, Wang H, Yang W and Liu Z: Autophagy induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm Sci. 45:600–605. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Ding K and Xu J: FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 236:43–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang SW, Zhang DS, Sun Y, Zhu CY, Fei Q, Hu J, Zhang C and Sun YM: FTY720-induced enhancement of autophagy protects cells from FTY720 cytotoxicity in colorectal cancer. Oncol Rep. 35:2833–2842. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alinari L, Mahoney E, Patton J, Zhang X, Huynh L, Earl CT, Mani R, Mao Y, Yu B, Quinion C, et al: FTY720 increases CD74 expression and sensitizes mantle cell lymphoma cells to milatuzumab-mediated cell death. Blood. 118:6893–6903. 2011. View Article : Google Scholar : PubMed/NCBI | |
Trkov S, Stenovec M, Kreft M, Potokar M, Parpura V, Davletov B and Zorec R: Fingolimod-a sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes. Glia. 60:1406–1416. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ahmed D, de Verdier PJ, Ryk C, Lunqe O, Stål P and Flygare J: FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol Res Perspect. 3:e001712015. View Article : Google Scholar : PubMed/NCBI | |
Tay KH, Liu X, Chi M, Jin L, Jiang CC, Guo ST, Verrills NM, Tseng HY and Zhang XD: Involvement of vacuolar H(+)-ATPase in killing of human melanoma cells by the sphingosine kinase analogue FTY720. Pigment Cell Melanoma Res. 28:171–183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang MH, Qin C, Fan WH, Tian DS and Liu JL: Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS One. 12:e01887482017. View Article : Google Scholar : PubMed/NCBI | |
Min KJ and Kwon TK: Induction of lysosomal membrane permeabilization is a major event of FTY720-mediated non-apoptotic cell death in human glioma cells. Cancers (Basel). 12:33882020. View Article : Google Scholar : PubMed/NCBI | |
Aizawa S, Yaguchi M, Nakano M, Toyama K, Inokuchi S, Imai T, Yasuda M, Nabeshima R and Handa H: Hematopoietic supportive function of human bone marrow stromal cell lines established by a recombinant SV40-adenovirus vector. Exp Hematol. 22:482–487. 1994.PubMed/NCBI | |
Kazama H, Hiramoto M, Miyahara K, Takano N and Miyazawa K: Designing an effective drug combination for ER stress loading in cancer therapy using a real-time monitoring system. Biochem Biophys Res Commun. 501:286–292. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iwawaki T, Akai R, Kohno K and Miura M: A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med. 10:98–102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T and Mizushima N: An autophagic flux probe that releases an internal control. Mol Cell. 64:835–849. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Moriya S, Kazama H, Hirasawa K, Miyahara K, Kokuba H, Hino H, Kikuchi H, Takano N, Hiramoto M, et al: Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediated cytotoxicity by inducing atypical necroptosis. Int J Oncol. 52:1165–1177. 2018.PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aizawa S, Hiramoto M, Hoshi H, Toyama K, Shima D and Handa H: Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro. Exp Hematol. 28:148–155. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD and Will Y: A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro. 25:715–723. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K and Sugita T: Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-β in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol. 11:366–372. 2011. View Article : Google Scholar : PubMed/NCBI | |
White C, Alshaker H, Cooper C, Winkler M and Pchejetski D: The emerging role of FTY720 (fingolimod) in cancer treatment. Oncotarget. 7:23106–23127. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V and Herbst R: Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res. 12:4441s–4445s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, et al: Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected]. J Biotechnol. 25:231–243. 1992. View Article : Google Scholar : PubMed/NCBI | |
Crowley LC, Marfell BJ, Scott AP and Waterhouse NJ: Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc 2016. 2016. View Article : Google Scholar | |
Duriez PJ and Shah GM: Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochem Cell Biol. 75:337–349. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rogakou EP, Boon C, Redon C and Bonner WM: Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146:905–916. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rogakou EP, Nieves-Neira W, Boon C, Pommier Y and Bonner WM: Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 275:9390–9395. 2000. View Article : Google Scholar : PubMed/NCBI | |
Patel T, Gores GJ and Kaufmann SH: The role of proteases during apoptosis. FASEB J. 10:587–597. 1996. View Article : Google Scholar : PubMed/NCBI | |
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, et al: Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 4:313–321. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aruoma OI, Halliwell B, Hoey BM and Butler J: The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 6:593–597. 1989. View Article : Google Scholar : PubMed/NCBI | |
Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, Liu ZG, Ong CN and Shen HM: Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 4:457–466. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Gómez-Sintes R and Boya P: Lysosomal membrane permeabilization and cell death. Traffic. 19:918–931. 2018. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Puebla A and Boya P: Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 46:207–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cremer T, Neefjes J and Berlin I: The journey of Ca2+ through the cell-pulsing through the network of ER membrane contact sites. J Cell Sci. 133:jcs2491362020. View Article : Google Scholar : PubMed/NCBI | |
Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA and Herman B: The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1366:177–196. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kim I, Rodriguez-Enriquez S and Lemasters JJ: Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 462:245–253. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ponnambalam S, Girotti M, Yaspo ML, Owen CE, Perry AC, Suganuma T, Nilsson T, Fried M, Banting G and Warren G: Primate homologues of rat TGN38: Primary structure, expression and functional implications. J Cell Sci. 109:675–685. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ghosh RN, Mallet WG, Soe TT, McGraw TE and Maxfield FR: An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J Cell Biol. 142:923–936. 1998. View Article : Google Scholar : PubMed/NCBI | |
Di Martino R, Sticco L and Luini A: Regulation of cargo export and sorting at the trans-Golgi network. FEBS Lett. 593:2306–2318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hino H, Iriyama N, Kokuba H, Kazama H, Moriya S, Takano N, Hiramoto M, Aizawa S and Miyazawa K: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes. Cancer Sci. 111:2132–2145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ohkuma S and Poole B: Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA. 75:3327–3331. 1978. View Article : Google Scholar : PubMed/NCBI | |
Mackenzie AH: Pharmacologic actions of 4-aminoquinoline compounds. Am J Med. 75:5–10. 1983. View Article : Google Scholar : PubMed/NCBI | |
Appelqvist H, Nilsson C, Garner B, Brown AJ, Kagedal K and Ollinger K: Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am J Pathol. 178:629–639. 2011. View Article : Google Scholar : PubMed/NCBI | |
Appelqvist H, Sandin L, Björnström K, Saftig P, Garner B, Ollinger K and Kågedal K: Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS One. 7:e502622012. View Article : Google Scholar : PubMed/NCBI | |
Kornhuber J, Henkel AW, Groemer TW, Städtler S, Welzel O, Tripal P, Rotter A, Bleich S and Trapp S: Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system. J Cell Physiol. 224:152–164. 2010.PubMed/NCBI | |
Villamil Giraldo AM, Appelqvist H, Ederth T and Öllinger K: Lysosomotropic agents: Impact on lysosomal membrane permeabilization and cell death. Biochem Soc Trans. 42:1460–1464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Sung T, Lin N, Abraham RT and Jessen BA: Lysosomal adaptation: How cells respond to lysosomotropic compounds. PLoS One. 12:e01737712017. View Article : Google Scholar : PubMed/NCBI | |
Anand A, Liu B, Dicroce Giacobini J, Maeda K, Rohde M and Jäättelä M: Cell death induced by cationic amphiphilic drugs depends on lysosomal Ca2+ release and cyclic AMP. Mol Cancer Ther. 18:1602–1614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F and Serrano M: Lysosomal trapping of palbociclib and its functional implications. Oncogene. 38:3886–3902. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aits S and Jäättelä M: Lysosomal cell death at a glance. J Cell Sci. 126:1905–1912. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu H and Ren D: Lysosomal physiology. Annu Rev Physiol. 77:57–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ballabio A and Bonifacino JS: Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 21:101–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Huang P and Dong XP: Lysosomal calcium channels in autophagy and cancer. Cancers (Basel). 13:12992021. View Article : Google Scholar : PubMed/NCBI | |
Sahara S and Yamashima T: Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun. 393:806–811. 2010. View Article : Google Scholar : PubMed/NCBI | |
Villalpando Rodriguez GE and Torriglia A: Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 1833:2244–2253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Phillips MJ and Voeltz GK: Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 17:69–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prinz WA, Toulmay A and Balla T: The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 21:7–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vessey DA, Kelley M, Zhang J, Li L, Tao R and Karliner JS: Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol. 21:273–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bandhuvula P, Tam YY, Oskouian B and Saba JD: The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem. 280:33697–33700. 2005. View Article : Google Scholar : PubMed/NCBI | |
Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG and Natarajan V: FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem. 284:5467–5477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lahiri S, Park H, Laviad EL, Lu X, Bittman R and Futerman AH: Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem. 284:16090–16098. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dawson G and Qin J: Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun. 404:321–323. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ogretmen B: Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 18:33–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Obeid LM: Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Obeid LM: Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 19:175–191. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hayashi A, Hong J and Iacobuzio-Donahue CA: The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 18:469–481. 2021. View Article : Google Scholar : PubMed/NCBI |