1
|
Saito K, Nagashima H, Noguchi K, Yoshisue
K, Yokogawa T, Matsushima E, Tahara T and Takagi S: First-in-human,
phase I dose-escalation study of single and multiple doses of a
first-in-class enhancer of fluoropyrimidines, a dUTPase inhibitor
(TAS-114) in healthy male volunteers. Cancer Chemother Pharmacol.
73:577–583. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ghosh S: Cisplatin: The first metal based
anticancer drug. Bioorg Chem. 88:1029252019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ward JF: DNA damage produced by ionizing
radiation in mammalian cells: Identities, mechanisms of formation,
and reparability. Prog Nucleic Acid Res Mol Biol. 35:95–125. 1988.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Blondy S, David V, Verdier M, Mathonnet M,
Perraud A and Christou N: 5-Fluorouracil resistance mechanisms in
colorectal cancer: From classical pathways to promising processes.
Cancer Sci. 111:3142–3154. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harper JW and Elledge SJ: The DNA damage
response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hirokawa T, Shiotani B, Shimada M, Murata
K, Johmura Y, Haruta M, Tahara H, Takeyama H and Nakanishi M:
CBP-93872 inhibits NBS1-mediated ATR activation, abrogating
maintenance of the DNA double-strand break-specific G2 checkpoint.
Cancer Res. 74:3880–3889. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shimada M and Nakanishi M: DNA damage
checkpoints and cancer. J Mol Histol. 37:253–260. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Niida H, Katsuno Y, Banerjee B, Hande MP
and Nakanishi M: Specific role of Chk1 phosphorylations in cell
survival and checkpoint activation. Mol Cell Biol. 27:2572–2581.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimada M, Niida H, Zineldeen DH, Tagami
H, Tanaka M, Saito H and Nakanishi M: Chk1 is a histone H3
threonine 11 kinase that regulates DNA damage-induced
transcriptional repression. Cell. 132:221–232. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shimada M and Nakanishi M: Checkpoints
meet the transcription at a novel histone milestone (H3-T11). Cell
Cycle. 7:1555–1559. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu Q, Guntuku S, Cui XS, Matsuoka S,
Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A,
et al: Chk1 is an essential kinase that is regulated by Atr and
required for the G(2)/M DNA damage checkpoint. Genes Dev.
14:1448–1459. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Iacopetta B: TP53 mutation in colorectal
cancer. Hum Mutat. 21:271–276. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Song Y, Li L, Ou Y, Gao Z, Li E, Li X,
Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic
alterations in oesophageal squamous cell cancer. Nature. 509:91–95.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fan S, Smith ML, Rivet DJ II, Duba D, Zhan
Q, Kohn KW, Fornace AJ Jr and O'Connor PM: Disruption of p53
function sensitizes breast cancer MCF-7 cells to cisplatin and
pentoxifylline. Cancer Res. 55:1649–1654. 1995.PubMed/NCBI
|
16
|
Goto H, Izawa I, Li P and Inagaki M: Novel
regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good
candidate for anti-cancer therapy? Cancer Sci. 103:1195–1200. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma CX, Janetka JW and Piwnica-Worms H:
Death by releasing the breaks: CHK1 inhibitors as cancer
therapeutics. Trends Mol Med. 17:88–96. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sundar R, Brown J, Ingles Russo A and Yap
TA: Targeting ATR in cancer medicine. Curr Probl Cancer.
41:302–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vendetti FP, Lau A, Schamus S, Conrads TP,
O'Connor MJ and Bakkenist CJ: The orally active and bioavailable
ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of
cisplatin to resolve ATM-deficient non-small cell lung cancer in
vivo. Oncotarget. 6:44289–44305. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Foote KM, Nissink JWM, McGuire T, Turner
P, Guichard S, Yates JW, Lau A, Blades K, Heathcote D, Odedra R, et
al: Discovery and characterization of AZD6738, a potent inhibitor
of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with
application as an anticancer agent. J Med Chem. 61:9889–9907. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wallez Y, Dunlop CR, Johnson TI, Koh SB,
Fornari C, Yates JWT, Bernaldo de Quirós Fernández S, Lau A,
Richards FM and Jodrell DI: The ATR inhibitor AZD6738 synergizes
with gemcitabine in vitro and in vivo to induce pancreatic ductal
adenocarcinoma regression. Mol Cancer Ther. 17:1670–1682. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Dok R, Glorieux M, Bamps M and Nuyts S:
Effect of ATR Inhibition in RT response of HPV-negative and
HPV-positive head and neck cancers. Int J Mol Sci. 22:15042021.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dillon MT, Barker HE, Pedersen M, Hafsi H,
Bhide SA, Newbold KL, Nutting CM, McLaughlin M and Harrington KJ:
Radiosensitization by the ATR inhibitor AZD6738 through generation
of acentric micronuclei. Mol Cancer Ther. 16:25–34. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Gorecki L, Andrs M, Rezacova M and
Korabecny J: Discovery of ATR kinase inhibitor berzosertib (VX-970,
M6620): Clinical candidate for cancer therapy. Pharmacol Ther.
210:1075182020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim R, Kwon M, An M, Kim ST, Smith SA,
Loembé AB, Mortimer PGS, Armenia J, Lukashchuk N, Shah N, et al:
Phase II study of ceralasertib (AZD6738) in combination with
durvalumab in patients with advanced/metastatic melanoma who have
failed prior anti-PD-1 therapy. Ann Oncol. 33:193–203. 2022.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shah PD, Wethington SL, Pagan C, Latif N,
Tanyi J, Martin LP, Morgan M, Burger RA, Haggerty A, Zarrin H, et
al: Combination ATR and PARP Inhibitor (CAPRI): A phase 2 study of
ceralasertib plus olaparib in patients with recurrent,
platinum-resistant epithelial ovarian cancer. Gynecol Oncol.
163:246–253. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dillon MT, Boylan Z, Smith D, Guevara J,
Mohammed K, Peckitt C, Saunders M, Banerji U, Clack G, Smith SA, et
al: PATRIOT: A phase I study to assess the tolerability, safety and
biological effects of a specific ataxia telangiectasia and
Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in
combination with palliative radiation therapy in patients with
solid tumours. Clin Transl Radiat Oncol. 12:16–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yap TA, Krebs MG, Postel-Vinay S, Bang YJ,
El-Khoueiry A, Abida W, Harrington K, Sundar R, Carter L,
Castanon-Alvarez E, et al: Phase I modular study of AZD6738, a
novel oral, potent and selective ataxia telangiectasia Rad3-related
(ATR) inhibitor in combination (combo) with carboplatin, olaparib
or durvalumab in patients (pts) with advanced cancers. Eur J
Cancer. 69 (Suppl 1):S22016. View Article : Google Scholar
|
29
|
Young LA, O'Connor LO, de Renty C,
Veldman-Jones MH, Dorval T, Wilson Z, Jones DR, Lawson D, Odedra R,
Maya-Mendoza A, et al: Differential activity of ATR and WEE1
inhibitors in a highly sensitive subpopulation of DLBCL linked to
replication stress. Cancer Res. 79:3762–3775. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nam AR, Jin MH, Bang JH, Oh KS, Seo HR, Oh
DY and Bang YJ: Inhibition of ATR increases the sensitivity to WEE1
inhibitor in biliary tract cancer. Cancer Res Treat. 52:945–956.
2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Min A, Im SA, Jang H, Kim S, Lee M, Kim
DK, Yang Y, Kim HJ, Lee KH, Kim JW, et al: AZD6738, A novel oral
inhibitor of ATR, induces synthetic lethality with ATM deficiency
in gastric cancer cells. Mol Cancer Ther. 16:566–577. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shimabukuro M, Hayashi K, Kishida R,
Tsuchiya A and Ishikawa K: No-observed-effect level of silver
phosphate in carbonate apatite artificial bone on initial bone
regeneration. ACS Infect Dis. 8:159–169. 2022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rodrigues NR, Rowan A, Smith ME, Kerr IB,
Bodmer WF, Gannon JV and Lane DP: p53 mutations in colorectal
cancer. Proc Natl Acad Sci USA. 87:7555–7559. 1990. View Article : Google Scholar : PubMed/NCBI
|
34
|
Iwata T, Uchino T, Koyama A, Johmura Y,
Koyama K, Saito T, Ishiguro S, Arikawa T, Komatsu S, Miyachi M, et
al: The G2 checkpoint inhibitor CBP-93872 increases the sensitivity
of colorectal and pancreatic cancer cells to chemotherapy. PLoS
One. 12:e01782212017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Stover EH, Konstantinopoulos PA, Matulonis
UA and Swisher EM: Biomarkers of response and resistance to DNA
repair targeted therapies. Clin Cancer Res. 22:5651–5660. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Landau HJ, McNeely SC, Nair JS, Comenzo
RL, Asai T, Friedman H, Jhanwar SC, Nimer SD and Schwartz GK: The
checkpoint kinase inhibitor AZD7762 potentiates
chemotherapy-induced apoptosis of p53-mutated multiple myeloma
cells. Mol Cancer Ther. 11:1781–1788. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Meng X, Laidler LL, Kosmacek EA, Yang S,
Xiong Z, Zhu D, Wang X, Dai D, Zhang Y, Wang X, et al: Induction of
mitotic cell death by overriding G2/M checkpoint in endometrial
cancer cells with non-functional p53. Gynecol Oncol. 128:461–469.
2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu S, Shiotani B, Lahiri M, Maréchal A,
Tse A, Leung CC, Glover JN, Yang XH and Zou L: ATR
autophosphorylation as a molecular switch for checkpoint
activation. Mol Cell. 43:192–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Foote KM, Lau A and Nissink JW: Drugging
ATR: Progress in the development of specific inhibitors for the
treatment of cancer. Future Med Chem. 7:873–891. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nishida H, Tatewaki N, Nakajima Y, Magara
T, Ko KM, Hamamori Y and Konishi T: Inhibition of ATR protein
kinase activity by schisandrin B in DNA damage response. Nucleic
Acids Res. 37:5678–5689. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Charrier JD, Durrant SJ, Golec JM, Kay DP,
Knegtel RM, MacCormick S, Mortimore M, O'Donnell ME, Pinder JL,
Reaper PM, et al: Discovery of potent and selective inhibitors of
ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase
as potential anticancer agents. J Med Chem. 54:2320–2330. 2011.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Šalovská B, Fabrik I, Ďurišová K, Link M,
Vávrová J, Řezáčová M and Tichý A: Radiosensitization of human
leukemic HL-60 cells by ATR kinase inhibitor (VE-821):
Phosphoproteomic analysis. Int J Mol Sci. 15:12007–12026. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Foote KM, Blades K, Cronin A, Fillery S,
Guichard SS, Hassall L, Hickson I, Jacq X, Jewsbury PJ, McGuire TM,
et al: Discovery of
4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole
(AZ20): A potent and selective inhibitor of ATR protein kinase with
monotherapy in vivo antitumor activity. J Med Chem. 56:2125–2138.
2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Jones CD, Blades K, Foote KM, Guichard SM,
Jewsbury PJ, McGuire T, Nissink JW, Odedra R, Tam K, Thommes P, et
al: Abstract 2348: Discovery of AZD6738, a potent and selective
inhibitor with the potential to test the clinical efficacy of ATR
kinase inhibition in cancer patients. Cancer Res. 73 (Suppl
8):S23482013.
|
45
|
Chalabi-Dchar M, Fenouil T, Machon C,
Vincent A, Catez F, Marcel V, Mertani HC, Saurin JC, Bouvet P,
Guitton J, et al: A novel view on an old drug, 5-fluorouracil: An
unexpected RNA modifier with intriguing impact on cancer cell fate.
NAR Cancer. 3:zcab0322021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Very N, Hardivillé S, Decourcelle A,
Thévenet J, Djouina M, Page A, Vergoten G, Schulz C, Kerr-Conte J,
Lefebvre T, et al: Thymidylate synthase O-GlcNAcylation: A
molecular mechanism of 5-FU sensitization in colorectal cancer.
Oncogene. 41:745–756. 2022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Longley DB, Harkin DP and Johnston PG:
5-fluorouracil: Mechanisms of action and clinical strategies. Nat
Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mori R, Yoshida K, Futamura M, Suetsugu T,
Shizu K, Tanahashi T, Tanaka Y, Matsuhashi N and Yamaguchi K: The
inhibition of thymidine phosphorylase can reverse acquired
5FU-resistance in gastric cancer cells. Gastric Cancer. 22:497–505.
2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hagenkort A, Paulin CBJ, Desroses M, Sarno
A, Wiita E, Mortusewicz O, Koolmeister T, Loseva O, Jemth AS,
Almlöf I, et al: dUTPase inhibition augments replication defects of
5-fluorouracil. Oncotarget. 8:23713–23726. 2017. View Article : Google Scholar : PubMed/NCBI
|