Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)
- Authors:
- Ling Yang
- Hong-Jian Xie
- Ying-Ying Li
- Xia Wang
- Xing-Xin Liu
- Jia Mai
-
Affiliations: Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China - Published online on: February 25, 2022 https://doi.org/10.3892/or.2022.8293
- Article Number: 82
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI | |
Orr B and Edwards RP: Diagnosis and treatment of ovarian cancer. Hematol Oncol Clin North Am. 32:943–964. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gershenson DM, Bodurka DC, Lu KH, Nathan LC, Milojevic L, Wong KK, Malpica A and Sun CC: Impact of age and primary disease site on outcome in women with low-grade serous carcinoma of the ovary or peritoneum: Results of a large single-institution registry of a rare tumor. J Clin Oncol. 33:2675–2682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grisham RN, Sylvester BE, Won H, McDermott G, DeLair D, Ramirez R, Yao Z, Shen R, Dao F, Bogomolniy F, et al: Extreme outlier analysis identifies occult mitogen-activated protein kinase pathway mutations in patients with low-grade serous ovarian cancer. J Clin Oncol. 33:4099–4105. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chui MH, Chang JC, Zhang Y, Zehir A, Schram AM, Konner J, Drilon AE, Da Cruz Paula A, Weigelt B and Grisham RN: Spectrum of BRAF mutations and gene rearrangements in ovarian serous carcinoma. JCO Precis Oncol. 5:PO.21.00055. 2021.PubMed/NCBI | |
Davidson B and Tropé CG: Ovarian cancer: Diagnostic, biological and prognostic aspects. Women's Health (Lond). 10:519–533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reavis HD and Drapkin R: The tubal epigenome-An emerging target for ovarian cancer. Pharmacol Ther. 210:1075242020. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Duska LR, Ramirez PT, Heymach JV, Kamat AA, Modesitt SC, Schmeler KM, Iyer RB, Garcia ME, Miller DL, et al: Phase 1–2 study of docetaxel plus aflibercept in patients with recurrent ovarian, primary peritoneal, or fallopian tube cancer. Lancet Oncol. 12:1109–1117. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nowak M and Klink M: The Role of Tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar : PubMed/NCBI | |
Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J and Nycum LR: OCEANS: A randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol. 30:2039–2045. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cruz IN, Coley HM, Kramer HB, Madhuri TK, Safuwan NA, Angelino AR and Yang M: Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics. 14:35–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, et al: Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: Phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 5:393–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A and Chiappinelli KB: Epigenetic therapy for ovarian cancer: Promise and progress. Clin Epigenetics. 11:72019. View Article : Google Scholar : PubMed/NCBI | |
Ren F, Shen J, Shi H, Hornicek FJ, Kan Q and Duan Z: Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta. 1866:266–275. 2016.PubMed/NCBI | |
Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T and He H: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 5:2673–2677. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zalewski M, Kulbacka J, Saczko J, Drag-Zalesinska M and Choromanska A: Valspodar-modulated chemotherapy in human ovarian cancer cells SK-OV-3 and MDAH-2774. Bosn J Basic Med Sci. 19:234–241. 2019.PubMed/NCBI | |
Baekelandt M, Lehne G, Tropé CG, Szántó I, Pfeiffer P, Gustavssson B and Kristensen GB: Phase I/II trial of the multidrug-resistance modulator valspodar combined with cisplatin and doxorubicin in refractory ovarian cancer. J Clin Oncol. 19:2983–2993. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gee ME, Faraahi Z, McCormick A and Edmondson RJ: DNA damage repair in ovarian cancer: Unlocking the heterogeneity. J Ovarian Res. 11:502018. View Article : Google Scholar : PubMed/NCBI | |
Sengupta D, Mukhopadhyay A and Sengupta K: Emerging roles of lamins and DNA damage repair mechanisms in ovarian cancer. Biochem Soc Trans. 48:2317–2333. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ledermann JA, Drew Y and Kristeleit RS: Homologous recombination deficiency and ovarian cancer. Eur J Cancer. 60:49–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28 (Suppl 8):viii13–viii15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karakashev S, Fukumoto T, Zhao B, Lin J, Wu S, Fatkhutdinov N, Park PH, Semenova G, Jean S, Cadungog MG, et al: EZH2 inhibition sensitizes CARM1-high, homologous recombination proficient ovarian cancers to PARP Inhibition. Cancer Cell. 37:157–167.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moschetta M, George A, Kaye SB and Banerjee S: BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 27:1449–1455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, et al: Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2:366–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang HL, Hsu YH, Lin WC, Yu WH, Leonard PG, Lee GR IV, et al: Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 22:194–201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brown JS, O'Carrigan B, Jackson SP and Yap TA: Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 7:20–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alsop K, Fereday S, Meldrum C, DeFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, et al: BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 30:2654–2663. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iyer S, Zhang S, Yucel S, Horn H, Smith SG, Reinhardt F, Hoefsmit E, Assatova B, Casado J, Meinsohn MC, et al: Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11:384–407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Domchek SM: Reversion mutations with clinical use of PARP inhibitors: Many genes, many versions. Cancer Discov. 7:937–939. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pietragalla A, Arcieri M, Marchetti C, Scambia G and Fagotti A: Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int J Gynecol Cancer. 30:1803–1810. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, Helman E, Radke MR, Say C, Vo LT, et al: BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 9:210–219. 2019. View Article : Google Scholar : PubMed/NCBI | |
Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T and Swisher EM: Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 29:3008–3015. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M, et al: Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 7:984–998. 2017. View Article : Google Scholar : PubMed/NCBI | |
He YJ, Meghani K, Caron MC, Yang C, Ronato DA, Bian J, Sharma A, Moore J, Niraj J, Detappe A, et al: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 563:522–526. 2018. View Article : Google Scholar : PubMed/NCBI | |
Penson RT, Valencia RV, Cibula D, Colombo N, Leath CA III, Bidziński M, Kim JW, Nam JH, Madry R, Hernández C, et al: Olaparib versus nonplatinum chemotherapy in patients with platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2 mutation (SOLO3): A randomized phase III trial. J Clin Oncol. 38:1164–1174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marzi L, Szabova L, Gordon M, Weaver Ohler Z, Sharan SK, Beshiri ML, Etemadi M, Murai J, Kelly K and Pommier Y: The indenoisoquinoline TOP1 inhibitors selectively target homologous recombination-deficient and schlafen 11-positive cancer cells and synergize with olaparib. Clin Cancer Res. 25:6206–6216. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ, Ellis S, Kang J, Cullinane C, Sheppard KE, et al: The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer. 124:616–627. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yap TA, O'Carrigan B, Penney MS, Lim JS, Brown JS, de Miguel Luken MJ, Tunariu N, Perez-Lopez R, Rodrigues DN, Riisnaes R, et al: Phase I trial of first-in-class ATR Inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J Clin Oncol. 38:3195–3204. 2020. View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Cheng SC, Wahner Hendrickson AE, Penson RT, Schumer ST, Doyle LA, Lee EK, Kohn EC, Duska LR, Crispens MA, et al: Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21:957–968. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K and Miyazaki K: Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 116:2621–2634. 2010.PubMed/NCBI | |
Au-Yeung G, Lang F, Azar WJ, Mitchell C, Jarman KE, Lackovic K, Aziz D, Cullinane C, Pearson RB, Mileshkin L, et al: Selective targeting of cyclin E1-Amplified high-grade serous ovarian cancer by cyclin-dependent kinase 2 and AKT Inhibition. Clin Cancer Res. 23:1862–1874. 2017. View Article : Google Scholar : PubMed/NCBI | |
Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J; Australian Ovarian Cancer Study Group, ; Davis S, D'Andrea AD, Simpson K, et al: Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci USA. 110:19489–19494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Campbell GJ, Hands EL and Van de Pette M: The Role of CDKs and CDKIs in murine development. Int J Mol Sci. 21:53432020. View Article : Google Scholar : PubMed/NCBI | |
Angius G, Tomao S, Stati V, Vici P, Bianco V and Tomao F: Prexasertib, a checkpoint kinase inhibitor: From preclinical data to clinical development. Cancer Chemother Pharmacol. 85:9–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, et al: Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 11:37262020. View Article : Google Scholar : PubMed/NCBI | |
Gorski JW, Ueland FR and Kolesar JM: CCNE1 amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer. Diagnostics (Basel). 10:2792020. View Article : Google Scholar : PubMed/NCBI | |
Gralewska P, Gajek A, Marczak A and Rogalska A: Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol. 13:392020. View Article : Google Scholar : PubMed/NCBI | |
Garsed DW, Alsop K, Fereday S, Emmanuel C, Kennedy CJ, Etemadmoghadam D, Gao B, Gebski V, Garès V, Christie EL, et al: Homologous recombination DNA repair pathway disruption and retinoblastoma protein loss are associated with exceptional survival in high-grade serous ovarian cancer. Clin Cancer Res. 24:569–580. 2018. View Article : Google Scholar : PubMed/NCBI | |
da Costa AABA, do Canto LM, Larsen SJ, Ribeiro ARG, Stecca CE, Petersen AH, Aagaard MM, de Brot L, Baumbach J, Baiocchi G, et al: Genomic profiling in ovarian cancer retreated with platinum based chemotherapy presented homologous recombination deficiency and copy number imbalances of CCNE1 and RB1 genes. BMC Cancer. 19:4222019. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Whorton AE, Sekulovski N, Paquet M, MacLean JA, Song Y, Van Dyke T and Hayashi K: Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol Reprod. 102:1055–1064. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dall'Acqua A, Sonego M, Pellizzari I, Pellarin I, Canzonieri V, D'Andrea S, Benevol S, Sorio R, Giorda G, Califano D, et al: CDK6 protects epithelial ovarian cancer from platinum-induced death via FOXO3 regulation. EMBO Mol Med. 9:1415–1433. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giacomini I, Ragazzi E, Pasut G and Montopoli M: The pentose phosphate pathway and its involvement in cisplatin resistance. Int J Mol Sci. 21:9372020. View Article : Google Scholar : PubMed/NCBI | |
Morandi A and Indraccolo S: Linking metabolic reprogramming to therapy resistance in cancer. Biochim Biophys Acta Rev Cancer. 868:1–6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:e5322013. View Article : Google Scholar : PubMed/NCBI | |
Butler EB, Zhao Y, Muñoz-Pinedo C, Lu J and Tan M: Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance. Cancer Res. 73:2709–2717. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yeung SJ, Pan J and Lee MH: Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar : PubMed/NCBI | |
Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M and Lincet H: How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ai Z, Lu Y, Qiu S and Fan Z: Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett. 373:36–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ricci F, Brunelli L, Affatato R, Chilà R, Verza M, Indraccolo S, Falcetta F, Fratelli M, Fruscio R, Pastorelli R and Damia G: Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther Adv Med Oncol. 11:17588359198395432019. View Article : Google Scholar : PubMed/NCBI | |
Urpilainen E, Puistola U, Boussios S and Karihtala P: Metformin and ovarian cancer: The evidence. Ann Transl Med. 8:17112020. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Suh DH, Kim MK and Song YS: Metformin against cancer stem cells through the modulation of energy metabolism: Special considerations on ovarian cancer. Biomed Res Int. 2014:1327022014. View Article : Google Scholar : PubMed/NCBI | |
Itoh K, Tong KI and Yamamoto M: Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 36:1208–1213. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Han LY, Zhang XX and Wang L: The study of Nrf2 signaling pathway in ovarian cancer. Crit Rev Eukaryot Gene Expr. 28:329–336. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, Hurbain I, Raposo G, Popova T, Stern MH, et al: PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab. 29:156–173.e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, et al: Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Mol Cancer. 10:372011. View Article : Google Scholar : PubMed/NCBI | |
van der Wijst MG, Huisman C, Mposhi A, Roelfes G and Rots MG: Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol. 9:1259–1273. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hou D, Liu Z, Xu X, Liu Q, Zhang X, Kong B, Wei JJ, Gong Y and Shao C: Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 17:99–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kleih M, Böpple K, Dong M, Gaissler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10:8512019. View Article : Google Scholar : PubMed/NCBI | |
Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L and Windebank AJ: Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 41:661–668. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z and Cullen KJ: Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: Possible role in apoptosis. Clin Cancer Res. 12:5817–5825. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang L, Xiang X, Li Z, Qu K and Li K: A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging (Albany NY). 10:1366–1379. 2018. View Article : Google Scholar : PubMed/NCBI | |
Verschoor ML and Singh G: Ets-1 regulates intracellular glutathione levels: Key target for resistant ovarian cancer. Mol Cancer. 12:1382013. View Article : Google Scholar : PubMed/NCBI | |
Wilson LA, Yamamoto H and Singh G: Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther. 3:823–832. 2004.PubMed/NCBI | |
Nwani NG, Condello S, Wang Y, Swetzig WM, Barber E, Hurley T and Matei D: A Novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer. Cancers (Basel). 11:5022019. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Beck B and Blanpain C: Unravelling cancer stem cell potential. Nat Rev Cancer. 13:727–738. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maugeri-Saccà M, Vigneri P and De Maria R: Cancer stem cells and chemosensitivity. Clin Cancer Res. 17:4942–4947. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu L, McArthur C and Jaffe RB: Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer. 102:1276–1283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Cao X, An Q, Zhang Y, Li K, Yao W, Shi F, Pan Y, Jia Q, Zhou W, et al: Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 9:14062018. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Galván S, Felipe-Abrio B, Verdugo-Sivianes EM, Perez M, Jiménez-García MP, Suarez-Martinez E, Estevez-Garcia P and Carnero A: Downregulation of MYPT1 increases tumor resistance in ovarian cancer by targeting the Hippo pathway and increasing the stemness. Mol Cancer. 19:72020. View Article : Google Scholar : PubMed/NCBI | |
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SK and Abbaszadegan MR: Ovarian cancer stem cells and targeted therapy. J Ovarian Res. 12:1202019. View Article : Google Scholar : PubMed/NCBI | |
Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, et al: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 28:209–218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cole AJ, Iyengar M, Panesso-Gómez S, O'Hayer P, Chan D, Delgoffe GM, Aird KM, Yoon E, Bai S and Buckanovich RJ: NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight. 5:e1314862020. View Article : Google Scholar : PubMed/NCBI | |
Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71:3991–4001. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li SS, Ma J and Wong AST: Chemoresistance in ovarian cancer: Exploiting cancer stem cell metabolism. J Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P and Li Y: Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer. 19:6182019. View Article : Google Scholar : PubMed/NCBI | |
Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, Yang K, Reynolds RK, Johnston C, McLean K, et al: Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight. 5:e1332472020.PubMed/NCBI | |
Bogani G, Lopez S, Mantiero M, Ducceschi M, Bosio S, Ruisi S, Sarpietro G, Guerrisi R, Brusadelli C, Dell'Acqua A, et al: Immunotherapy for platinum-resistant ovarian cancer. Gynecol Oncol. 158:484–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nelson BH: The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev. 222:101–116. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shen GH, Ghazizadeh M, Kawanami O, Shimizu H, Jin E, Araki T and Sugisaki Y: Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer. 83:196–203. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen CA, Cheng WF, Lee CN, Chen TM, Kung CC, Hsieh FJ and Hsieh CY: Serum vascular endothelial growth factor in epithelial ovarian neoplasms: Correlation with patient survival. Gynecol Oncol. 74:235–240. 1999. View Article : Google Scholar : PubMed/NCBI | |
Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
An Y and Yang Q: Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer. 149:21–30. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y and Zhu X: STAT3 signaling in ovarian cancer: A potential therapeutic target. J Cancer. 11:837–848. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lamichhane P, Karyampudi L, Shreeder B, Krempski J, Bahr D, Daum J, Kalli KR, Goode EL, Block MS, Cannon MJ and Knutson KL: IL10 Release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res. 77:6667–6678. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, et al: Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 81:158–173. 2021.PubMed/NCBI | |
Kalim M, Iqbal Khan MS and Zhan J: Programmed cell death ligand-1: A dynamic immune checkpoint in cancer therapy. Chem Biol Drug Des. 95:552–566. 2020. View Article : Google Scholar : PubMed/NCBI | |
Constantinidou A, Alifieris C and Trafalis DT: Targeting programmed cell death −1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacol Ther. 194:84–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE and Tsang BK: Chemoresistance in human ovarian cancer: The role of apoptotic regulators. Reprod Biol Endocrinol. 1:662003. View Article : Google Scholar : PubMed/NCBI | |
Janzen DM, Tiourin E, Salehi JA, Paik DY, Lu J, Pellegrini M and Memarzadeh S: An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun. 6:79562015. View Article : Google Scholar : PubMed/NCBI | |
Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, Deng J, Anderson KC, Richardson P, Tai YT, et al: Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 334:1129–1133. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baekelandt M, Kristensen GB, Nesland JM, Tropé CG and Holm R: Clinical significance of apoptosis-related factors p53, Mdm2, and Bcl-2 in advanced ovarian cancer. J Clin Oncol. 17:20611999. View Article : Google Scholar : PubMed/NCBI | |
Baekelandt M, Holm R, Nesland JM, Tropé CG and Kristensen GB: Expression of apoptosis-related proteins is an independent determinant of patient prognosis in advanced ovarian cancer. J Clin Oncol. 18:3775–3781. 2000. View Article : Google Scholar : PubMed/NCBI | |
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y and Yu Y: Therapeutic inducers of apoptosis in ovarian cancer. Cancers (Basel). 11:17862019. View Article : Google Scholar : PubMed/NCBI | |
Zervantonakis IK, Iavarone C, Chen HY, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis U, Leverson JD, Sampath D, et al: Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat Commun. 8:3652017. View Article : Google Scholar : PubMed/NCBI | |
Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, Jones LA, El-Naggar A, Minguillon C, Schönborn I, et al: Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 7:2984–2997. 2001.PubMed/NCBI | |
Lee JM, Nair J, Zimmer A, Lipkowitz S, Annunziata CM, Merino MJ, Swisher EM, Harrell MI, Trepel JB, Lee MJ, et al: Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: A first-in-class proof-of-concept phase 2 study. Lancet Oncol. 19:207–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chui MH, Momeni Boroujeni A, Mandelker D, Ladanyi M and Soslow RA: Characterization of TP53-wildtype tubo-ovarian high-grade serous carcinomas: Rare exceptions to the binary classification of ovarian serous carcinoma. Mod Pathol. 34:490–501. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lavarino C, Pilotti S, Oggionni M, Gatti L, Perego P, Bresciani G, Pierotti MA, Scambia G, Ferrandina G, Fagotti A, et al: p53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J Clin Oncol. 18:3936–3945. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, et al: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 330:228–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guan B, Wang TL and Shih IeM: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71:6718–6727. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, Zhai Y, Kossenkov AV, Vara-Ailor A, Rauscher FJ III, et al: ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 19:962–973. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Panigrahi DP, Patil S and Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu YL, Jahangiri A, Delay M and Aghi MK: Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 72:4294–4299. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Su J, Xu Y, Kang J, Li H, Zhang L, Yi H, Xiang X, Liu F and Sun L: p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer. 47:1585–1594. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL, Wu H, Patel R, Liu D, Qin ZH, Shih IM and Yang JM: NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene. 31:1055–1064. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Zhou L, Chen Z, Nice EC and Huang C: Stress management by autophagy: Implications for chemoresistance. Int J Cancer. 139:23–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Follo C, Cheng Y, Richards WG, Bueno R and Broaddus VC: Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma. Mol Carcinog. 57:319–332. 2018. View Article : Google Scholar : PubMed/NCBI | |
He J, Yu JJ, Xu Q, Wang L, Zheng JZ, Liu LZ and Jiang BH: Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy. 11:373–384. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shteingauz A, Boyango I, Naroditsky I, Hammond E, Gruber M, Doweck I, Ilan N and Vlodavsky I: Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res. 75:3946–3957. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B and Najafi M: MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol. 892:1736602021. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, Chen X, Vellano CP, Jeong KJ, Ng PK, et al: Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med. 9:eaal51482017. View Article : Google Scholar : PubMed/NCBI | |
Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J and Rosen N: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 19:58–71. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aksamitiene E, Kiyatkin A and Kholodenko BN: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem Soc Trans. 40:139–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, et al: Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell. 16:115–125. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Heo JH, Park JY, Jeong JY, Cho HJ, Park KS, Kim SH, Moon YW, Kim JS and An HJ: A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecol Oncol. 153:135–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Lee SJ, Ryu JH, Kim SH, Kwon IC and Roberts TM: Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J Control Release. 318:98–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Nag S, Aggarwal S, Rauthan A and Warrier N: Maintenance therapy for recurrent epithelial ovarian cancer: Current therapies and future perspectives-a review. J Ovarian Res. 12:1032019. View Article : Google Scholar : PubMed/NCBI | |
Lorusso PM, Edelman MJ, Bever SL, Forman KM, Pilat M, Quinn MF, Li J, Heath EI, Malburg LM, Klein PJ, et al: Phase I study of folate conjugate EC145 (Vintafolide) in patients with refractory solid tumors. J Clin Oncol. 30:4011–4016. 2012. View Article : Google Scholar : PubMed/NCBI | |
Naumann RW, Coleman RL, Burger RA, Sausville EA, Kutarska E, Ghamande SA, Gabrail NY, Depasquale SE, Nowara E, Gilbert L, et al: PRECEDENT: A randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer. J Clin Oncol. 31:4400–4406. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R and Birrer MJ: Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: A Phase I expansion study. J Clin Oncol. 35:1112–1118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Holmes D: Ovarian cancer: Beyond resistance. Nature. 527:S2172015. View Article : Google Scholar : PubMed/NCBI | |
Huber D, Seitz S, Kast K, Emons G and Ortmann O: Use of oral contraceptives in BRCA mutation carriers and risk for ovarian and breast cancer: A systematic review. Arch Gynecol Obstet. 301:875–884. 2020. View Article : Google Scholar : PubMed/NCBI |